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Abstract. A general method is described for finding algebraic expressions for matrix elements
of any one- and two-particle operator for an arbitrary number of subshells in an atomic
configuration, requiring neither coefficients of fractional parentage nor unit tensors. It is based on
the combination of second quantization in the coupled tensorial form, angular momentum theory
in three spaces (orbital, spin and quasispin), and a generalized graphical technique. The latter
allows us to graphically calculate the irreducible tensorial products of the second-quantization
operators and their commutators, and to formulate additional rules for operations with diagrams.
The additional rules allow us to graphically find the normal form of the complicated tensorial
products of the operators. All matrix elements (diagonal and non-diagonal with respect to
configurations) differ only by the values of the projections of the quasispin momenta of separate
shells and are expressed in terms of completely reduced matrix elements (in all three spaces) of
the second-quantization operators. As a result, it allows us to use standard quantities uniformly
for both diagonal and off-diagonal matrix elements.

1. Introduction

In order to obtain accurate values of atomic quantities it is necessary to account for
relativistic and correlation effects. Relativistic effects may be taken into account as Breit–
Pauli corrections or, in a fully relativistic approach, by starting with the Dirac–Coulomb
Hamiltonian and wavefunctions defined in terms of four-component one-electron orbitals.
In both cases, correlation effects may be considered either variationally or perturbatively.
For complex atoms and ions, a considerable part of the effort must be devoted to coping with
integrations over spin–angular variables, occurring in the matrix elements of the operators
under consideration.

Many existing codes for integrating the spin–angular parts of matrix elements (Glass
1978, Glass and Hibbert 1978, Grant 1988, Burkeet al 1994) are based on the computational
scheme proposed by Fano (1965). In essence, it consists of evaluating recoupling matrices.
Although such an approach uses Racah algebra, it may be necessary to carry out multiple
summations over intermediate terms. Due to these summations and the complexity of the
recoupling matrix itself, the associated computer codes become rather time consuming. A
solution to this problem was found by Burkeet al (1994). They tabulated separate standard
parts of recoupling matrices along with coefficients of fractional parentage at the beginning
of a calculation and then used them later to calculate the coefficients needed. Computer
codes by Glass (1978), Glass and Hibbert (1978), Grant (1988), Burkeet al (1994) utilize
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the program NJSYM (Burke 1970) or NJGRAF (Bar-Shalom and Klapisch 1988) for the
calculation of recoupling matrices. Both are rather time consuming when calculating matrix
elements of complex operators or electronic configurations with many open subshells.

In order to simplify the calculations, Cowan (1981) suggested grouping matrix elements
into ‘classes’ (see Cowan 1981, figures 13–15). Unfortunately, this approach was not
generalized to all two-electron operators. Perhaps this is the reason why Cowan’s approach
is not widely used although the program itself, based on this approach is widely used.

Many approaches for the calculation of spin–angular coefficients (Glass 1978, Glass and
Hibbert 1978, Grant 1988, Burkeet al 1994) are based on the usage of Racah algebra only on
the level of coefficients of fractional parentage. A few authors (Jucys and Savukynas 1973,
Cowan 1981) utilized the unit tensors, simplifying the calculations in this way, because the
tables of unit tensors and selection rules can be used to check whether the spin–angular
coefficients are zero prior to computation. Moreover, the recoupling matrices themselves
have a simpler form. Unfortunately, these ideas were applied only to diagonal matrix
elements with respect to configurations, although Cowan (1981) suggested the usage of unit
tensors for non-diagonal ones as well.

All the above-mentioned approaches were applied in the coordinate representation.
The second-quantization formalism (Judd 1967, Rudzikas and Kaniauskas 1984, Rudzikas
1991 and Rudzikas 1997) has a number of advantages compared with the coordinate
representation. First, it is much easier to find algebraic expressions for complex operators
and their matrix elements, when relying on second-quantization formalism. It has
contributed significantly to the successful development of perturbation theory (see Lindgren
and Morrison 1982, Merkeliset al 1985), and orthogonal operators (Uylings 1984), where
three-particle operators already occur. Uylings (1992) suggested a fairly simple approach for
dealing with separate cases of three-particle operators. Moreover, in the second quantization
approach the quasispin formalism was efficiently developed by Rudzikas and Kaniauskas
(1984). The main advantage of this approach is that applying the quasispin method for
calculating the matrix elements of any operator, we can use the reduced coefficients of
fractional parentage whose matrix elements are independent of the occupation number of
the shell. All this enabled Merkelis and Gaigalas (1985) to work out a general perturbation
theory approach for complex cases of several open shells.

Thus, it seems that it is possible to formulate an efficient and general approach for finding
the spin–angular parts of matrix elements of atomic interactions, relying on the combination
of the second-quantization approach in the coupled tensorial form, the generalized graphical
technique and angular momentum theory in orbital, spin and quasispin spaces as well as
the symmetry properties of the quantities considered, which would be free of previous
shortcomings. Gaigalas and Rudzikas (1996) suggested such an approach for finding matrix
elements of any one- and two-particle atomic operator for the case of two open shells of
equivalent electrons. But the situation is different when the matrix elements between more
complex configurations are considered.

An approach for the latter case is described in this paper. One of the main ideas
proposed here allows one to solve the problems related to the more complex configurations.
Namely, we propose applying Wick’s theorem (see Lindgren and Morrison 1982) not in
its usual general form while calculating the matrix elements, but rather only for groups of
operators acting upon distinct shells of equivalent electrons. So, the ordering of operators
generally would not be normal.

It is a universal approach for finding algebraic expressions for matrix elements of any
one- and two-particle operator in the general case of an arbitrary number of subshells
in an atomic configuration, heavily based on the exploitation of the quasispin technique
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and the Wigner–Eckart theorem in quasispin space. Expressions for matrix elements and
recoupling matrices are obtained by first classifying each matrix element into one of four
classes, depending on the number of subshells being acted upon. Each class is then further
subdivided into cases and explicit expressions derived for each case in terms of triangular
conditions,nj -symbols, and reduced matrix elements. From these expressions, efficient
procedures can be developed, that apply tests before performing computation.

Tensorial expressions for any two-particle operator are presented in section 2. They are
based on the underlying assumption that the second quantization operators (both creation
and annihilation), acting on the same open shell, must always be beside one another in
a tensorial product and must be coupled into a resultant momentum. Then the second
quantization operators, acting on the next shell, must follow, etc. Section 3 deals with
the matrix elements between complex configurations. General expressions for recoupling
matrices were found (section 4) by using the modified graphical technique of Jucys and
Bandzaitis (1977), allowing us to graphically calculate the irreducible tensorial products of
the second-quantization operators and their commutators, and to formulate additional rules
for operations with diagrams. The additional rules allow us to graphically find the normal
form of the complicated tensorial products of the operators. All the graphical transformations
we use here are fully described in Gaigalas and Rudzikas (1996).

Exploitation of this new version of Racah algebra based on the angular momentum
theory, on a generalized graphical approach, on quasispin approach, and on the use of
reduced coefficients of fractional parentage for finding the spin–angular parts of two-particle
operators is outlines in sections 5–7. Some details of the calculations are presented in the
appendix.

2. Tensorial expressions for any two-particle operators

In order to be able to find the expressions for matrix elements of the operators studied,
we have to express these operators in terms of the irreducible tensors or their irreducible
products. In this section we will present all the necessary tensorial expressions for any
two-particle operatorG.

First, we express the operator in second-quantization form (Gaigalas and Rudzikas 1996)
as

G =
∑

ni li ,nj lj ,n
′
i l

′
i ,n

′
j l

′
j

Ĝ(ni linj ljn
′
i l

′
in

′
j l

′
j ) = 1

2

∑
i,j,i ′,j ′

aiaja
†
j ′a

†
i ′(i, j |g|i ′, j ′) (1)

where, as is customary, the creation operatorsaiaj appear to the left of the annihilation
operatorsa†

j ′a
†
i ′ before defining the shells upon which the second-quantization operators are

acting. After defining the shells explicitly, the second-quantization operators are transformed
using their commutation relations so that all operators with the samenλ(λ ≡ l, s) are beside
one another. For example, in the case where the electron creation operatorai , and electron
annihilation operatorsa†

i ′ (where i ≡ nilismlimsi ) and a†
j ′ act upon the same shellα, and

operatoraj acts upon another shellβ, we have:

Ĝ(αβαα) = 1
2

∑
mlαmsαmlβ msβ m

′
lα
m′
sα
m′′
lα
m′′
sα

a(lαsα)mlαmsα
a

†(lαsα)
m′′
lα
m′′
sα

a
†(lαsα)
m′
lα
m′
sα

a
(lβ sβ )
mlβ msβ

×(nαλαmlαmsαnβλβmlβmsβ |g(κ1κ2k,σ1σ2k)|nαλαm′
lα
m′
sα
nαλαm

′′
lα
m′′
sα
). (2)

Here we imply that a tensorial structure indexed by(κ1κ2k, σ1σ2k) at g has rankκ1 for
electron 1, rankκ2 for electron 2, and a resulting rankk in the l space, and corresponding
ranksσ1σ2k in the s space.
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Now, applying the graphical approach of angular momentum theory (Gaigalaset al
1985), we can get an expression, namely

Ĝ(αβαα) = 1
2

∑
κ12σ12κ

′
12σ

′
12

∑
p

(−1)κ12+σ12−κ ′
12−σ ′

12−k−p(nαλαnβλβ‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα)

×[κ12, σ12][κ
′
12, σ

′
12]

1/2

{
lα lα κ ′

12
κ1 κ2 k

lα lβ κ12

} {
s s σ ′

12
σ1 σ2 k

s s σ12

}

×
∑
KlKs

[Kl,Ks ]
1/2

{
lβ lα κ12

κ ′
12 k Kl

} {
s s σ12

σ ′
12 k Ks

}

×[a(lβ s) × [a(lαs) × [ã(lαs) × ã(lαs)](κ
′
12σ

′
12)](KlKs)](kk)p,−p (3)

where [a, b] = (2a + 1)(2b + 1), (nαλαnβλβ‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα) is the two-electron
submatrix (reduced matrix) element of operatorĜ and ã(lαs) is defined as (Judd 1967)

ã(lαs)mlαms
= (−1)lα+s−mlα−msa†(lαs)

−mlα−ms . (4)

Expression (3) has summations over intermediate ranksκ ′
12, σ

′
12, Kl , Ks in tensorial product.

The angular momentum projection of(kk) is p,−p.
In order to calculate the spin–angular part of a two-particle operator matrix element with

an arbitrary number of open shells, it is necessary to consider all possible distributions of
subshells, upon which the second-quantization operators are acting. These are presented in
table 1. We point out that for distributions 2–5 and 19–42 the shells’ sequence numbersα, β,
γ , δ (in bra and ket functions of a submatrix element) satisfy the conditionα < β < γ < δ,
while for distributions 6–18 no conditions uponα, β, γ , δ are imposed.

Let � be an array of intermediate coupling parameters in tensorial form, including
κ12, σ12, κ ′

12, σ
′
12 and also possibly others. Then the tensorial expressions for all these

distributions can be grouped into four classes, where in each class, the two-particle operator
Ĝ, operating on specific shells (see equation (1)), has one of the following four forms.

(1) All the second-quantization operators act upon the same shell (distribution 1) and

Ĝ(I ) ∼
∑

κ12,σ12,κ
′
12,σ

′
12

∑
p

�(nλ,�)A
(kk)
p,−p(nλ,�). (5)

(2) The second-quantization operators act upon the two different shells (distributions 2–
10) and

Ĝ(II ) ∼
∑

κ12,σ12,κ
′
12,σ

′
12

∑
p

�(nαλα, nβλβ,�)[B
(κ12σ12)(nαλα,�)× C(κ

′
12σ

′
12)(nβλβ,�)]

(kk)
p,−p.

(6)

(3) The second-quantization operators act upon three shells (distributions 11–18)

Ĝ(III ) ∼
∑

κ12,σ12,κ
′
12,σ

′
12

∑
p

�(nαλα, nβλβ, nγ λγ ,�)

×[[D(lαs) ×D(lβs)](κ12σ12) × E(κ
′
12σ

′
12)(nγ λγ ,�)]

(kk)
p,−p. (7)

(4) The second-quantization operators act upon four shells (distributions 19–42) and

Ĝ(IV ) ∼
∑

κ12,σ12,κ
′
12,σ

′
12

∑
p

�(nαλα, nβλβ, nγ λγ , nδλδ,�)

×[[D(lαs) ×D(lβs)](κ12σ12) × [D(lγ s) ×D(lδs)](κ
′
12σ

′
12)](kk)p,−p. (8)
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Table 1. Distributions of subshells, upon which the second-quantization operators are acting,
that appear in the submatrix elements of any two-particle operator, when bra and ket functions
haveu open subshells.

No ai aj a
†
i′ a

†
j ′ Submatrix element

1 α α α α (. . . nαl
Nα
α . . . ‖Ĝ(ni linj lj n′

i l
′
in

′
j l

′
j )‖ . . . nαlNαα . . .)

2 α β α β

3 β α β α (. . . nαl
Nα
α . . . nβ l

Nβ
β . . . ‖

4 α β β α Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

5 β α α β ‖ . . . nαlNαα . . . nβ l
Nβ
β . . .)

6 α α β β (. . . nαl
Nα
α . . . nβ l

Nβ
β . . . ‖Ĝ‖ . . . nαlNα−2

α . . . nβ l
Nβ+2
β . . .)

7 β α α α

8 α β α α (. . . nαl
Nα
α . . . nβ l

Nβ
β . . . ‖

9 β β β α Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

10 β β α β ‖ . . . nαlNα+1
α . . . nβ l

Nβ−1
β . . .)

11 β γ α γ

12 γ β γ α (. . . nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ . . . ‖

13 γ β α γ Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

14 β γ γ α ‖ . . . nαlNα+1
α nβ l

Nβ−1
β nγ l

Nγ
γ . . .)

15 γ γ α β (. . . nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ . . . ‖Ĝ(ni linj lj n′

i l
′
in

′
j l

′
j )

16 γ γ β α ‖ . . . nαlNα+1
α nβ l

Nβ+1
β nγ l

Nγ−2
γ . . .)

17 α β γ γ (. . . nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ . . . ‖Ĝ(ni linj lj n′

i l
′
in

′
j l

′
j )

18 β α γ γ ‖ . . . nαlNα−1
α nβ l

Nβ−1
β nγ l

Nγ−2
γ . . .)

19 α β γ δ

20 β α γ δ (nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ nδl

Nδ
δ ‖

21 α β δ γ Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

22 β α δ γ ‖nαlNα−1
α nβ l

Nβ−1
β nγ l

Nγ+1
γ nδl

Nδ+1
δ )

23 γ δ α β

24 γ δ β α (nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ nδl

Nδ
δ ‖

25 δ γ α β Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

26 δ γ β α ‖nαlNα+1
α nβ l

Nβ+1
β nγ l

Nγ−1
γ nδl

Nδ−1
δ )

27 α γ β δ

28 α γ δ β (nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ nδl

Nδ
δ ‖

29 γ α δ β Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

30 γ α β δ ‖nαlNα−1
α nβ l

Nβ+1
β nγ l

Nγ−1
γ nδl

Nδ+1
δ )

31 β δ α γ

32 δ β γ α (nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ nδl

Nδ
δ ‖

33 β δ γ α Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

34 δ β α γ ‖nαlNα+1
α nβ l

Nβ−1
β nγ l

Nγ+1
γ nδl

Nδ−1
δ )
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Table 1. (Continued)

No ai aj a
†
i′ a

†
j ′ Submatrix element

35 α δ β γ

36 δ α γ β (nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ nδl

Nδ
δ ‖

37 α δ γ β Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

38 δ α β γ ‖nαlNα−1
α nβ l

Nβ+1
β nγ l

Nγ+1
γ nδl

Nδ−1
δ )

39 β γ α δ

40 γ β δ α (nαl
Nα
α nβ l

Nβ
β nγ l

Nγ
γ nδl

Nδ
δ ‖

41 β γ δ α Ĝ(ni linj lj n
′
i l

′
in

′
j l

′
j )

42 γ β α δ ‖nαlNα+1
α nβ l

Nβ−1
β nγ l

Nγ−1
γ nδl

Nδ+1
δ )

In (5)–(8), �(nλ,�), . . . ,�(nαλα, nβλβ, nγ λγ , nδλδ�) are proportional to the radial
part of the operatorĜ, andA(kk)(nλ,�), . . . , E(kk

′)(nλ,�) denote tensorial products of
irreducible tensors. Parameter� implies the array of coupling parameters that connect�

to the tensorial part. The explicit tensorial expressions are presented in the appendix, using
the graphical approach of Gaigalaset al (1985). Graphical methods make it possible to
reduce the number of expressions from 42 to 6 for all distributions presented in table 1.
Such a joining up of several distributions is possible by graphical means, because in the
graphical technique of Jucys and Bandzaitis (1977), as in the tensorial products of operators
of second quantization, the main elements are the Clebsch–Gordan coefficients. Therefore
we may join up all the distributions having essentially the same algebraic structure, although
with different tensorial products. The latter are represented by diagrams in which all the
peculiarities of a tensorial product are seen, and the differences of particular distributions
are easily noticed. The use of other graphical methods (see e.g. Yutsiset al 1962 or
Lindgren and Morrison 1982) in joining up the distributions is complicated, since there
the Wigner coefficients play the main role, and these are not fully compatible with the
graphical transformations of the operators of second quantization in coupled form. Having
classified the operators, we will now consider matrix elements of these operators for arbitrary
configurations.

3. Matrix elements between complex configurations

Now, having the irreducible tensorial form of the operator being considered, we are in a
position to find their matrix elements and recoupling matrices. Suppose that we have a bra
function withu shells inLS-coupling:

ψbra
u (LSMLMS) ≡ (n1l1n2l2 . . . nuluα1L1S1Q1MQ1α2L2S2Q2MQ2

. . . αuLuSuQuMQu
ALSMLMS | (9)

and a ket function:

ψket
u (L′S ′M ′

LM
′
S) ≡ |n1l1n2l2 . . . nuluα

′
1L

′
1S

′
1Q

′
1M

′
Q1
α′

2L
′
2S

′
2Q

′
2M

′
Q2

. . . α′
uL

′
uS

′
uQ

′
uM

′
Qu

A′L′S ′M ′
LM

′
S) (10)

whereA stands for all intermediate quantum numbers, depending on the order of coupling
of momentaLiSi . LabelQi is the quasispin momentum of the shellnil

Ni
i , which is related

to the seniority quantum numberνi , namely,Qi = (2li + 1 − νi)/2, and its projection,
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MQi
= (Ni −2li −1)/2. In (9) and (10),αi denotes all additional quantum numbers needed

for the classification of the energy levels of the relevant shell.
Using the Wigner–Eckart theorem inLS space we shift from the matrix element of

any two-particle operatorG between functions (9) and (10) to the submatrix element
(ψbra

u (LS)‖G‖ψket
u (L′S ′)) of this operator.

A general expression for the submatrix element of any two-particle operator between
functions (9) and (10) withu open shells can be written as

(ψbra
u (LS)‖G‖ψket

u (L′S ′)) =
∑

ni li ,nj lj ,n
′
i l

′
i ,n

′
j l

′
j

∑
κ12,σ12,κ

′
12,σ

′
12

∑
(−1),�′(niλi, njλj , n′

iλ
′
i , n

′
jλ

′
j , �)

×T (niλi, njλj , n′
iλ

′
i , n

′
jλ

′
j ,.

bra,.ket, �, /)× R(λi, λj , λ
′
i , λ

′
j ,.

bra,.ket, /)

(11)

where.bra ≡ (LiSi, LjSj , L
′
iS

′
i , L

′
j S

′
j )

bra is the array for the bra function shells’ terms, and
similarly for .ket. This expression is similar to equation (136) of Grant (1988) used in
his derivation. So, to calculate the spin–angular part of a submatrix element, one has to
compute the following.

(1) The recoupling matrixR(λi, λj , λ′
i , λ

′
j ,.

bra,.ket, /). This recoupling matrix
accounts for the change in going from matrix element(ψbra

u (LS)‖G‖ψket
u (L′S ′)),

which has u open shells in the bra and ket functions, to the submatrix element
T (niλi, njλj , n

′
iλ

′
i , n

′
jλ

′
j ,.

bra,.ket, �, /), which has only the shells being acted upon by
the two-particle operator in its bra and ket functions.

(2) The submatrix elementT (niλi, njλj , n′
iλ

′
i , n

′
jλ

′
j ,.

bra,.ket, �, /), which denotes the

submatrix elements of operators of the typesA(kk
′)(nλ,�), B(kk

′)(nλ,�), C(kk
′)(nλ,�),

D(ls), E(kk
′)(nλ,�) (see (5)–(8)). Here/ refers to the array of coupling parameters

connecting the recoupling matrixR(λi, λj , λ′
i , λ

′
j ,.

bra,.ket, /) to the submatrix element.
(3) Phase factor,.
(4)�′(niλi, njλj , n′

iλ
′
i , n

′
jλ

′
j , �), which is proportional to the radial part and corresponds

to one of�(nλ,�), . . . ,�(nαλα, nβλβ, nγ λγ , nδλδ,�). It consists of a submatrix element
(niλinjλj‖g(κ1κ2k,σ1σ2k)‖n′

iλ
′
in

′
jλ

′
j ), and in some cases of simple factors and 3nj -coefficients.

For instance, for the distributionsααββ, γ γαβ, γ γβα, αβγ γ , βαγ γ , αβγ δ, βαδγ , αβδγ ,
βαγ δ, γ δαβ, δγβα, γ δβα, δγ αβ (see expressions (52), (53) and notes on�′ and�̃ in the
appendix) it is:

�′(niλi, njλj , n′
iλ

′
i , n

′
jλ

′
j , �) = (−1)t �̃(niλi, njλj , n

′
iλ

′
i , n

′
jλ

′
j�)

= 1
2(−1)k−p+t+1(niλinjλj‖g(κ1κ2k,σ1σ2k)‖n′

iλ
′
in

′
jλ

′
j )

×[κ12, σ12, κ
′
12, σ

′
12]

1/2

{
li l′i κ1

lj l′j κ2

κ12 κ ′
12 k

} {
s s σ1

s s σ2

σ12 σ ′
12 k

}
, (12)

where the integert determining the phase depends upon the configuration states involved.
Rules for its determination are given in the appendix.

The calculation of�′(niλi, njλj , n′
iλ

′
i , n

′
jλ

′
j , �) is straightforward (from an angular

momentum point of view) and depends on the radial form of the operator. In the next
sections we will describe expressions for the recoupling matrix, the submatrix elements,
and the phase factor, respectively.
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4. Recoupling matrices

In this section we present the expressions for the recoupling matrices

R(λi, λj , λ
′
i , λ

′
j ,.

bra,.ket, /).

These matrices may be treated in the orbitall and spins spaces separately. That is,

R(λi, λj , λ
′
i , λ

′
j ,.

bra,.ket, /) = R(li, lj , l
′
i , l

′
j ,.

bra
l , .

ket
l , /l)R(s, s, s, s,.

bra
s , .

ket
s , /s)

(13)

where λbra
l ≡ (Li, Lj , L

′
i , L

′
j )

bra and.bra
s ≡ (Si, Sj , S

′
i , S

′
j )

bra. Therefore, for simplicity
we present only the expressions inl space. The recoupling matrices ins space are easily
obtained from analogous expressions inl space by making corresponding substitutions
l1, l2, . . . , lu → s; L1 → S1, L2 → S2; . . . ;L12 → S12, . . . , L123..u−1 → S123...u−1; L → S,
L′ → S ′. Also, the analytical expressions for recoupling matrices presented in this section
are valid in the case ofjj -coupling.

As we have mentioned earlier, there are four classes as defined by equations (5)–(8),
we will consider each class separately. All the expressions presented below are obtained by
using the approach of angular momentum theory described by Jucys and Bandzaitis (1977).

4.1. One interacting shell

Let us assume that the operators of second quantization act upon shella as in distribution 1
of table 1, wherea ≡ α. Then the recoupling matrix has the expression:

R(la, La, k) = [La]
−1/2δ(L1, L

′
1) . . . δ(La−1, L

′
a−1)δ(La+1, L

′
a+1) . . . δ(Lu, L

′
u)

×




δ(L1, L
′
1, k); for u = 1

C1; for u = 2

C1C2(k, a + 1, u− 1)C3; for a < 3, u > 2

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)

×C1C2(k, a + 1, u− 1)C3; for a > 3, a �= u, u > 2

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C3; for a = u, u > 2.

(14)

In the above, the notationδ(L1, L
′
1, k) means the triangular condition|L1 − L′

1| � k �
L1 + L′

1 and

C1 = (−1)ϕ [La, T
′]1/2

{
k L′

a La
J T T ′

}
, (15)

where the values of parametersϕ, J , T and T ′ present in expression (15) are given in
table 2. The remaining two coefficients are

C2(k, kmin, kmax) =
kmax∏
i=kmin

(−1)k+Li+L12...i−1+L′
12...i [L12...i−1, L

′
12...i ]

1/2

×
{
k L′

12...i−1 L12...i−1

Li L12...i L′
12...i

}
; (16)

and

C3 = (−1)ϕ [J, T ′]1/2

{
k J ′ J

j T T ′

}
; (17)

where the parametersϕ, j , J , J ′, T andT ′ are given in table 3.
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Table 2. Parameters for equation (15).

u a ϕ J T T ′

2 1 L1 + 2L′
1 − L2 − L′ + k L2 L L′

2 2 L1 + L+ L′
2 + k L1 L L′

u �= 2 1 L1 + 2L′
1 − L2 − L′

12 + k L2 L12 L′
12

u �= 2 2 L1 + L12 + L′
2 + k L1 L12 L′

12
u �= 2 a > 2 L12...a−1 + L12...a + L′

a + k L12...a−1 L12...a L′
12...a

Table 3. Parameters for equation (17).

u ϕ j J J ′ T T ′

u �= a k + Lu + L12...u−1 + L′ Lu L12...u−1 L′
12...u−1 L L′

a k − L12...u−1 + 2Lu + L′
u − L L12...u−1 Lu L′

u L L′

When the total rankk = 0, the recoupling matrix becomes simply

R(la, La,0) = δ(L1, L
′
1)δ(L2, L

′
2)δ(L12, L

′
12) . . . δ(La−1, L

′
a−1)

×δ(L12...a−1, L
′
12...a−1)δ(La, L

′
a)δ(L12...a, L

′
12...a)δ(La+1, L

′
a+1)

×δ(L12...a+1, L
′
12...a+1) . . . δ(Lu, L

′
u)δ(L,L

′) (18)

expression (18) is equivalent to (13.60) of Cowan (1981).

4.2. Two interacting shells

In this case let us assume that the operators of second quantization act upon the shellsa and
b (distributions 2–10 in table 1, where for distributions 2–5a ≡ α, b ≡ β and for others
(6–10)a = min{α, β}, b = max{α, β}). Then

R(la, La, lb, Lb, κ12, κ
′
12, k) = (−1)ζ [La,Lb]

−1/2δ(L1, L
′
1) . . . δ(La−1, L

′
a−1)

×δ(La+1, L
′
a+1) . . . δ(Lb−1, L

′
b−1)δ(Lb+1, L

′
b+1) . . . δ(Lu, L

′
u)

×




C4(K12,K
′
12, k,1)C2(k,3, u− 1)C3; for a = 1, b = 2

C1C2(K12, a + 1, b − 1)C4(K12,K
′
12, k,1)

×C2(k, b + 1, u− 1)C3; for a < 3, b > 2, b �= u

C1C2(K12, a + 1, b − 1)C4(K12,K
′
12, k,1); for a < 3, b = u

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C1

×C2(K12, a + 1, b − 1)C4(K12,K
′
12, k,1)

×C2(k, b + 1, u− 1)C3; for a � 3, b > 2, b �= u

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C1

×C2(K12, a + 1, b − 1)C4(K12,K
′
12, k,1); for a � 3, b = u

(19)

where

ζ =
{

0 for α < β

κ12 + κ ′
12 − k for α > β,

(20)
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Table 4. Parameters for equation (21).

P a b u J1 J ′
1 J2 J ′

2 J3 J ′
3

1 1 2 u �= b L1 L′
1 L2 L′

2 L12 L12

1 1 2 b L1 L′
1 L2 L′

2 L L

1 a �= 1 b �= 2 b L1...u−1 L′
1...u−1 Lu L′

u L L′
1 in all other cases L1...b−1 L′

1...b−1 Lb L′
b L1...b L′

1...b

2 in all cases L1...c−1 L′
1...c−1 Lc L′

c L1...c L′
1...c

Table 5. Parameters for equation (23).

P Case J1 J ′
1 J2

1 a = 1 andb = 2 La L′
a L12...b

1 b �= u L1...b−1 L′
1...b−1 L12...b

1 b = u L1...b−1 L′
1...b−1 L

2 c �= u L1...c−1 L′
1...c−1 L12...c

2 c = u L1...c−1 L′
1...c−1 L

3 d �= u L1...d−1 L′
1...d−1 L12...d

3 d = u L1...d−1 L′
1...d−1 L

and

C4(k1, k2, k, P ) = [J1, J2, J
′
3, k]

1/2

{
J ′

1 k1 J1

J ′
2 k2 J2

J ′
3 k J3

}
. (21)

The values of parametersJ1, J ′
1, J2, J ′

2, J3 andJ ′
3 present in expression (21) must be

taken from table 4. For the caseα < β in equation (19)K12 = κ12, K ′
12 = κ ′

12 and when
α > β, thenK12 = κ ′

12, K
′
12 = κ12.

When the total rankk = 0, andκ12 = κ ′
12 = k, the recoupling matrix has the form:

R(la, La, lb, Lb, k, k,0) = [La,L
′
b, k]

−1/2δ(L1, L
′
1) . . . δ(La−1, L

′
a−1)

×δ(La+1, L
′
a+1) . . . δ(Lb−1, L

′
b−1)δ(Lb+1, L

′
b+1) . . . δ(Lu, L

′
u)

×δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)δ(L12...b, L

′
12...b) . . . δ(L,L

′)

×




C5(1); for a = 1, b = 2

C1C2(k, a + 1, b − 1)C5(1); for a < 3

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)

×C1C2(k, a + 1, b − 1)C5(1); for a � 3,

(22)

where

C5(P ) = (−1)k+Lb+J
′
1+J2[J1, L

′
b]

1/2

{
k L′

b Lb
J2 J1 J ′

1

}
. (23)

The values of parametersJ1, J ′
1 and J2 present in expression (23) must be taken from

table 5.
Formula (22) has no analogue in Cowan (1981). Our expressions for the recoupling

matrix do not depend on coefficients of fractional parentage and have no intermediate
summations. Therefore they will be very convenient for practical calculations.
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Table 6. Parameters for equation (24).

Case a b c ζ K1 K2 K3 C6

α < β < γ α β γ 0 k1 k2 κ ′
12 δ(j12, κ12)

β < α < γ β α γ k1 + k2 − κ12 k2 k1 κ ′
12 δ(j12, κ12)

β < γ < α β γ α 0 k2 κ ′
12 k1 C′

6(κ
′
12, k2, j12, k1, k, κ12)

α < γ < β α γ β k1 + k2 − κ12 k1 κ ′
12 k2 C′

6(κ
′
12, k1, j12, k2, k, κ12)

γ < α < β γ α β 2k1 + k2 − κ12 + κ ′
12 − j12 κ ′

12 k1 k2 C′
6(κ

′
12, k1, j12, k2, k, κ12)

γ < β < α γ β α k1 + k2 − κ12 κ ′
12 k2 k1 C′

6(κ
′
12, k2, j12, k1, k, κ12)

4.3. Three interacting shells

When the operators of second quantization act upon three shellsa, b and c (distributions
11–18 in table 1), we have:

R(la, La, lb, Lb, lc, Lc, k1, k2, κ12, κ
′
12, k) = [La,Lb, Lc]

−1/2δ(L1, L
′
1) . . . δ(La−1, L

′
a−1)

×δ(La+1, L
′
a+1) . . . δ(Lb−1, L

′
b−1)δ(Lb+1, L

′
b+1) . . . δ(Lc−1, L

′
c−1)

×δ(Lc+1, L
′
c+1) . . . δ(Lu, L

′
u)

∑
j12

(−1)ζC6

×




C4(K1,K2, j12,1)C2(j12,3, c − 1)

×C4(j12,K3, k,2)C2(k, c + 1, u− 1)C3; for a = 1, b = 2

C1C2(K1, a + 1, b − 1)C4(K1,K2, j12,1)

×C2(j12, b + 1, c − 1)C4(j12,K3, k,2)

×C2(k, c + 1, u− 1)C3; for a < 3

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C1

×C2(K1, a + 1, b − 1)C4(K1,K2, j12,1)

×C2(j12, b + 1, c − 1)C4(j12,K3, k,2)

×C2(k, c + 1, u− 1)C3; for a � 3,

(24)

where parametersa, b, c, ζ , K1, K2, K3 and coefficientC6 are given in table 6. The
coefficientC ′

6(k1, k2, k3, k4, k5, k6) is

C ′
6(k1, k2, k3, k4, k5, k6) = (−1)k1+k2−k3+2k5[k3, k6]1/2

{
k1 k2 k3

k4 k5 k6

}
. (25)

From (7) we have that in expressions (24) and (25) the ranksk1 = lα, k2 = lβ .
When the total rankk = 0, andκ12 = κ ′

12 = k, the recoupling matrix has the form:

R(la, La, lb, Lb, lc, Lc, k1, k2, k, k,0) = (−1)ζ [La,Lb, L
′
c, K3]−1/2

×δ(L1, L
′
1) . . . δ(La−1, L

′
a−1)δ(La+1, L

′
a+1) . . . δ(Lb−1, L

′
b−1)

×δ(Lb+1, L
′
b+1) . . . δ(Lc−1, L

′
c−1)δ(Lc+1, L

′
c+1) . . . δ(Lu, L

′
u)

×δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)δ(L12...c, L

′
12...c) . . . δ(L,L

′)
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Table 7. Parameters for equation (26).

Case ζ K1 K2 K3

α < β < γ 0 k1 k2 k

β < α < γ k1 + k2 − k k2 k1 k

β < γ < α 2k1 k2 k k1

α < γ < β k1 − k2 − k k1 k k2

γ < α < β 2k k k1 k2

γ < β < α k1 + k2 + k k k2 k1

×




C4(K1,K2,K3,1)C2(K3, b + 1, c − 1)C5(2); for a = 1, b = 2

C1C2(K1, a + 1, b − 1)C4(K1,K2,K3,1)

×C2(K3, b + 1, c − 1)C5(2); for a < 3

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C1

×C2(K1, a + 1, b − 1)C4(K1,K2,K3,1)

×C2(K3, b + 1, c − 1)C5(2); for a � 3

(26)

where the parametersζ , K1, K2, K3 values are given in table 7.
The recoupling matrix for three interacting shells (26) has the same advantages as the

equivalent quantity, equation (22), for two shells.

4.4. Four interacting shells

When the operators of second quantization act upon four shells,a, b, c andd (distributions
19–42 in table 1), we have:

R(la, La, lb, Lb, lc, Lc, ld , Ld, k1, k2, κ12, k3, k4, κ
′
12, k)

= [La,Lb, Lc, Ld ]
−1/2δ(L1, L

′
1) . . . δ(La−1, L

′
a−1)

×δ(La+1, L
′
a+1) . . . δ(Lb−1, L

′
b−1)δ(Lb+1, L

′
b+1) . . . δ(Lc−1, L

′
c−1)

×δ(Lc+1, L
′
c+1) . . . δ(Ld−1, L

′
d−1)δ(Ld+1, L

′
d+1) . . . δ(Lu, L

′
u)

×




C4(k1, k2, κ12,1)C2(κ12,3, c − 1)C7(c, d)

×C2(k, d + 1, u− 1)C3; for a = 1, b = 2

C1C2(k1, a + 1, b − 1)C4(k1, k2, κ12,1)

×C2(κ12, b + 1, c − 1)C7(c, d)

×C2(k, d + 1, u− 1)C3; for a < 3

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C1

×C2(k1, a + 1, b − 1)C4(k1, k2, κ12,1)

×C2(κ12, b + 1, c − 1)C7(c, d)

×C2(k, d + 1, u− 1)C3; for a � 3,

(27)
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where

C7(kmin, kmax) =




∑
I

C8(I )C10(I ), for kmax − kmin = 1

∑
I1

∑
I2

C8(I1)C9(I1, I2, kmin + 1)C10(I2), for kmax − kmin = 2

∑
I1

∑
I2

C8(I1)C11(I1, I2)C10(I2); for kmax − kmin < 2

(28)

C8(I ) = (−1)κ12+L′
12...c−I [Lc, I, L12...c−1, L

′
12...c]

1/2

×
{

k3 L′
c Lc

L12...c−1 L12...c I

} {
L′

12...c−1 κ12 L12...c−1

I L′
c L′

12...c

}
, (29)

C9(I1, I2, i) = (−1)2(I1+Li)+L12...i+L′
12...i+k3+κ12[L12...i−1, I1, I2, L

′
12...i ]

1/2

×
{
L12...i−1 I1 k3

I2 L12...i Li

} {
L′

12...i−1 I1 κ12

I2 L′
12...i Li

}
, (30)

C10(I ) = (−1)2(I+k3)+k4+κ12+κ ′
12+k+L12...d+L′

12...d+Ld+L′
d+L′

12...d−1

×[κ12, κ
′
12, Ld, I, L

′
12...d , L12...d−1]1/2

∑
x

(−1)x [x]

×
{
I κ ′

12 x

k L′
12...d−1 κ12

} {
I κ ′

12 x

k4 L12...d−1 k3

}

×
{
L12...d−1 k4 x

L′
d L12...d Ld

} {
L′

12...d−1 k x

L12...d L′
d L′

12...d

}
. (31)

C11(I1, I2) = (−1)I1−I2+L
′
12...c−L′

12...d−1[I1, I2]1/2
∑
x

[x]C2(x, c + 1, d − 1)

×
{

k3 κ12 x

L′
12...c L12...c I1

} {
k3 κ12 x

L′
12...d−1 L12...d−1 I2

}
. (32)

From (8) we have that in expressions (27) and (30)–(32) the ranksk1 = lα, k2 = lβ , k3 = lγ ,
k4 = lδ.

When the total rankk = 0 andκ12 = κ ′
12 = k, the recoupling matrix has the form:

R(la, La, lb, Lb, lc, Lc, ld , Ld, k1, k2, k, k3, k4, k,0)

= [La,Lb, Lc, L
′
d , k]

−1/2δ(L1, L
′
1) . . . δ(La−1, L

′
a−1)

×δ(La+1, L
′
a+1) . . . δ(Lb−1, L

′
b−1)δ(Lb+1, L

′
b+1) . . .

× . . . δ(Lc−1, L
′
c−1)δ(Lc+1, L

′
c+1) . . . δ(Ld−1, L

′
d−1)

×δ(Ld+1, L
′
d+1) . . . δ(Lu, L

′
u)

×δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)δ(L12...d , L

′
12...d ) . . . δ(L,L

′)
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×




C4(k1, k2, k,1)C2(k, b + 1, c − 1)

×C4(k, k3, k4,1)C2(k4, c + 1, d − 1)

×C5(3); for a = 1, b = 2

C1C2(k, a + 1, b − 1)C4(k1, k2, k,1)

×C2(k, b + 1, c − 1)C4(k, k3, k4,2)

×C2(k4, c + 1, d − 1)C5(3); for a < 3

δ(L12, L
′
12) . . . δ(L12...a−1, L

′
12...a−1)C1

×C2(k, a + 1, b − 1)C4(k1, k2, k,1)

×C2(k, b + 1, c − 1)C4(k, k3, k4,2)

×C2(k4, c + 1, d − 1)C5(3) for a � 3.

(33)

Expression (33) also has no analogue in Cowan (1981).
Thus, we have studied all possible cases of matrix elements of arbitrary two-electron

operators. The expressions for recoupling matrices ((22), (26) and (33)) obtained in this
section are simpler and, thus, more convenient for practical applications, than those of
Cowan (1981), except for the simplest casek = 0 of an operator acting on one shell (18),
where they are equivalent.

5. Calculation of tensorial quantities

In this section we will consider the submatrix elements

T (niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j ,.

bra,.ket, �, /)

appearing in (11). Taking into account the fact that operatorsa(λ)mλ and ã(λ)mλ are components

of the tensora(qλ)mqmλ , having in quasispin space the rankq = 1
2 and projectionsmq = ± 1

2, i.e.

a
(qλ)
1
2mλ

= a(ls)mlms
anda(qλ)− 1

2mλ
= ã(ls)mlms

the operatorsA(kk
′)(nλ,�), B(kk

′)(nλ,�), C(kk
′)(nλ,�),

D(ls), E(kk
′)(nλ,�) (see (5)–(8)) in our case correspond, respectively, to the following five

expressions:

a(qλ)mq
, (34)

[a(qλ)mq1
× a(qλ)mq2

](κ1σ1), (35)

[a(qλ)mq1
× [a(qλ)mq2

× a(qλ)mq3
](κ1σ1)](κ2σ2), (36)

[[a(qλ)mq1
× a(qλ)mq2

](κ1σ1) × a(qλ)mq3
](κ2σ2), (37)

[[a(qλ)mq1
× a(qλ)mq2

](κ1σ1) × [a(qλ)mq3
× a(qλ)mq4

](κ2σ2)](kk). (38)

We will discuss the derivation of submatrix elements of these operators, and present the
expressions for these quantities. It is worth noting that these tensorial quantities all act upon
the same shell. So, all the advantages of tensor algebra and the quasispin formalism may
be exploited efficiently.

We obtain the submatrix elements of operator (34) by straightforwardly using the
Wigner–Eckart theorem in quasispin space:

(lNαQLS‖a(qls)mq
‖lN ′

α′Q′L′S ′) = −[Q]−1/2

[
Q′ 1/2 Q

M ′
Q mq MQ

]
(lαQLS|||a(qls)|||lα′Q′L′S ′),

(39)
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where the last multiplier in (39) is the so-called completely reduced (reduced in the quasispin,
orbital and spin spaces) matrix element. The coefficient[

j1 j2 j

m1 m2 m

]

is a Clebsch–Gordan coefficient. Different notations for it appear, for example,A
jj1j2
mm1m2 in

Eckart (1930),Sj1j2
jm1m2

in Wigner (1931),(j1j2m1m2|j1j2jm) in Condon and Shortley (1935)
and Judd (1967).

The value of the submatrix element of operator (35) is obtained by basing our
development on (33), (34) of Gaigalas and Rudzikas (1996). In the other three cases
(36)–(38) we obtain them by using (2.28) of Jucys and Savukynas (1973):

(nlNαQLS‖[F (κ1σ1)(nλ)×G(κ2σ2)(nλ)](kk)‖nlN ′
α′Q′L′S ′) = (−1)L+S+L′+S ′+2k[k]

×
∑

α′′Q′′L′′S ′′
(nlNαQLS‖F (κ1σ1)(nλ)‖nlN ′′

α′′Q′′L′′S ′′)

×(nlN ′′
α′′Q′′L′′S ′′‖G(κ2σ2)(nλ)‖nlN ′

α′Q′L′S ′)

×
{
κ1 κ2 k

L′ L L′′

} {
σ1 σ2 k

S ′ S S ′′

}
, (40)

where F (κ1σ1)(nλ), G(κ2σ2)(nλ) is one of (34) or (35) and the submatrix elements
correspondingly are defined by (39) and (33), (34) of Gaigalas and Rudzikas (1996).N ′′ is
defined by the second-quantization operators occurring inF (κ1σ1)(nλ) andG(κ2σ2)(nλ).

As is seen, by using this approach, the calculation of the angular parts of matrix elements
between functions withu open shells is reduced to requiring the submatrix elements of
tensors (34) and (35) within one shell of equivalent electrons. As these completely reduced
submatrix elements do not depend on the occupation number of the shell, the tables for
these quantities are considerably reduced in size in comparison with the tables of analogous
submatrix elements of tensorial quantitiesUk, V k1k2 (Jucys and Savukynas 1973) and the
tables of fractional parentage coefficients.

6. Phase factor

In this section we present the phase factors, in (11), which appear for submatrix elements
of operators in equations (5)–(8).

For distributions 1–6 (table 1):

, = 0. (41)

For distributions 7–18 (table 1):

, = 1 +
j−1∑
k=i

Nk, (42)

where if α < β, then i = α, j = β, and if α > β, then i = β, j = α; Nk is the
occupation number of a shell of equivalent electrons having the labelk. For distributions
19–42 (table 1):

, =
β−1∑
k=α

Nk +
δ−1∑
k=γ

Nk. (43)
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7. Spin–angular part of any two-particle operator

In the previous sections, all the expressions required calculating the spin–angular part of any
two-particle operator given. For convenience, the structure of the expressions (the numbers
of the corresponding formulae) are summarized in table 8 for each distribution given in
table 1. The classification numbers of the distributions are presented in the first column
of table 8. The equation number of the tensorial expression of the two-particle operator
Ĝ is given in the second column, and the equation number of the tensorial class of the
two-particle operator, denoted bŷG(T ), in the third column.

The next four columns give the numbers of the formulae of the tensors, which act inside
the shell. A tensor acting upon theα shell is given in theα column, and in the columns
β, γ , δ—upon theβ, γ , δ shells, respectively. Consequently, if we want to find submatrix
element,T (niλi, njλj , n′

iλ
′
i , n

′
jλ

′
j ,.

bra,.ket, �, /), first we have to calculate the submatrix
element of the tensor from columnα between functions, consisting only of theα shell, and
then to look for the submatrix element of the tensor from columnβ between functions,
consisting only of theβ shell, etc. Thus, we need to calculate only submatrix elements of
the tensors acting upon a certain shell. The details of the calculation of these submatrix
elements were discussed in section 5.

The coefficients�̃ are given in the�̃ column. The numbers of expressions for the
recoupling matrixR(λi, λj , λ′

i , λ
′
j ,.

bra,.ket, /) and phase factor, are given in the last
two columns. From this table it is easy to derive the general formulae for spin–angular
parts of matrix elements of any two-particle operator.

8. Conclusions

The approach to matrix element evaluations that we present, is based on the combination
of the angular momentum theory as described in Jucys and Bandzaitis (1977), on the
concept of irreducible tensorial sets (Judd 1967, Rudzikas and Kaniauskas 1984), on a
generalized graphical approach (Gaigalaset al 1985), on the quasispin approach (Rudzikas
and Kaniauskas 1984), and on the use of reduced coefficients of fractional parentage
(Rudzikas 1991, Rudzikas 1997, Judd 1996). All this, in its entirety, introduces a number
of new features, in comparison with the following traditional approaches.

(1) The tensorial expressions of a two-particle operator, presented in section 2, allow
one to exploit all the advantages of a new version of Racah algebra based on quasispin
formalism when the latter is applied within each particular shell only. In particular, this is
not only a reformulation of spin–angular calculations in terms of standard quantities, but
also the determination beforehand from symmetry properties, of which matrix elements are
equal to zero without performing further explicit calculations. That is determined from the
submatrix elementsT (niλi, njλj , n′

iλ
′
i , n

′
jλ

′
j ,.

bra,.ket, �, /).
(2) It enables one to use the Wigner–Eckart theorem in quasispin space. This provides

an opportunity to use tables of reduced coefficients of fractional parentage and tables of
other standard quantities (section 5), which do not depend on the occupation number of a
shell of equivalent electrons. Thus, the volume of tables of standard quantities is reduced
considerably in comparison with the analogous tables of submatrix elements of tensorial
operatorsUk, V k1 and the tables of fractional parentage coefficients. This undoubtedly
makes the inclusion of shells of equivalentf electrons with arbitrary occupation numbers
considerably easier, and the process of selecting the standard quantities from the tables
becomes simpler.

(3) The tensorial form of any operator presented in section 2 allows one to obtain
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Table 8. Scheme of the expressions for matrix elements of any two-particle operator.

No. Ĝ Ĝ(T ) α β γ δ �̃ R ,

1 (44) (5) (38) — — — (45) (14), (18) (41)
(47) (5) (38) — — — (48), (49) (14), (18) (41)

2 (50) (6) (35) (35) — — (51) (19), (22) (41)
3 (50) (6) (35) (35) — — (51) (19), (22) (41)
4 (54) (6) (35) (35) — — (55) (19), (22) (41)
5 (54) (6) (35) (35) — — (55) (19), (22) (41)

6 (52) (6) (35) (35) — — (53) (19), (22) (41)

7 (56) (6) (36) (34) — — (58) (19), (22) (42)
8 (56) (6) (36) (34) — — (59) (19), (22) (42)
9 (60) (6) (34) (37) — — (62) (19), (22) (42)

10 (60) (6) (34) (37) — — (63) (19), (22) (42)

11 (50) (7) (34) (34) (35) — (51) (24), (26) (42)
12 (50) (7) (34) (34) (35) — (51) (24), (26) (42)
13 (54) (7) (34) (34) (35) — (55) (24), (26) (42)
14 (54) (7) (34) (34) (35) — (55) (24), (26) (42)

15 (52) (7) (34) (34) (35) — (53) (24), (26) (42)
16 (52) (7) (34) (34) (35) — (53) (24), (26) (42)

17 (52) (7) (34) (34) (35) — (53) (24), (26) (42)
18 (52) (7) (34) (34) (35) — (53) (24), (26) (42)

19 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)
20 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)
21 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)
22 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)

23 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)
24 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)
25 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)
26 (52) (8) (34) (34) (34) (34) (53) (27), (33) (43)

27 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
28 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)
29 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
30 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)

31 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
32 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
33 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)
34 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)

35 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
36 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
37 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)
38 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)

39 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
40 (50) (8) (34) (34) (34) (34) (51) (27), (33) (43)
41 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)
42 (54) (8) (34) (34) (34) (34) (55) (27), (33) (43)
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simple expressions for the recoupling matrices (section 4). Hence, the computer code
based on this approach would immediately use the analytical formulae for recoupling
matricesR(λi, λj , λ′

i , λ
′
j ,.

bra,.ket, /). This feature also saves computing time, because
(i) complex calculations leading finally to simple analytical expressions (Bar-Shalom and
Klapisch 1988) are avoided, and (ii) a number of momenta triads (triangular conditions)
can be checked before the explicit calculation of a recoupling matrix leading to a zero
value. These triangular conditions may be determined not only for the terms of shells
that the operators of second quantization act upon, as is the case for the submatrix elements
T (niλi, njλj , n

′
iλ

′
i , n

′
jλ

′
j ,.

bra,.ket, �/) (see conclusion 1), but also for the rest of the shells
and resulting terms.

In this approach both diagonal and non-diagonal matrix elements, with respect to
configurations, are considered in a uniform way, and are expressed in terms of the same
quantities. The difference is only in the values of the projections of the quasispin momenta
of separate shells.

In this paper all the expressions needed in the spin–angular parts of matrix elements of
two-particle operators calculation are presented. This approach is also applicable to one-
particle operators. While calculating the spin–angular parts of the latter, all the expressions
needed are included in the cases discussed for the two-particle operator. For instance, in
the recoupling matrix calculation two of the four cases discussed above appear, namely,
when all the second-quantization operators act upon the same shell (section 4.1) and when
they act upon two different shells of equivalent electrons (section 4.2). Thus, this approach
is applicable to any one- and two-particle operator. Practical usage shows that a series of
difficulties persisting in the traditional approach to the calculation of angular parts of matrix
elements based on the usage of coefficients of fractional parentage and unit tensors can be
avoided and high efficiency may be achieved. Indeed, preliminary calculations show that
computer programs based on our approach on average are 4–6 times faster than the other
well known codes (Gaigalaset al 1995). This methodology can easily be generalized to
cover the case of relativistic operators and relativistic wavefunctions.

Acknowledgments

This work is part of a cooperative research project funded by National Science Foundation
under grant no PHY-9501830 and by EURONET PECAM associated contract ERBCIPDCT
940025. CFF was supported by a grant from the Division of Chemical Sciences, Office of
Basic Energy Sciences, Office of Energy Research, US Department of Energy.

Appendix

Here algebraic expressions are presented for the two-particle operator (1) in the irreducible
tensorial form for all the distributions from table 8. Although there are quite a few
distributions, the structure of their algebraic formulae is similar, and therefore on the
basis of a graphical approach (Gaigalaset al 1985) the expressions may be written
in a compact form, where one general formula includes all the cases having the same
structure. Each particular formula is obtained from these by performing elementary graphical
transformations according to the rules explained below. The general expressions are as
follows.

(1) Distributionαααα (case 1 from table 8).
For this distribution the analytical expressions (7), (8) in Gaigalas and Rudzikas (1996)
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Figure A1. Diagrams for an arbitrary two-particle operator. DiagramsA1, A2 andA3 represent
two-particle operators when this operator has distributionαααα. DiagramsA4 andA5 represent
two-particle operators for all other distributions. DiagramsA1, A2, A3, A4 andA5 are similar to
the usual Feynman–Goldstone diagrams. DiagramsA6, A7 andA8 represent tensorial products
of second quantization operators (A6 for the second group,A7 for the third, andA8 for the
fourth).

are used, in which the quantum numbersnili , nj lj , n′
i l

′
i , n

′
j l

′
j acquire particular values of a

shellα. For the first form (figure A1,A1), we have

A1 =
∑

κ12σ12κ
′
12σ

′
12

�̃I (nαλα, nαλα, nαλα, nαλα,�)

×[[a(lαs) × a(lαs)](κ12σ12) × [ã(lαs) × ã(lαs)](κ
′
12σ

′
12)](kk)p,−p, (44)

where

�̃I (nαλα, nαλα, nαλα, nαλα,�) ≡ �′(nαλα, nαλα, nαλα, nαλα,�)
≡ �(nαλα,�) (45)

and

�̃I (nαλα, nαλα, nαλα, nαλα,�) = 1
2(−1)k−p+1[κ12, σ12, κ

′
12, σ

′
12]

1/2

×(nαλαnαλα‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα)

×
{
lα lα κ1

lα lα κ2

κ12 κ ′
12 k

} {
s s σ1

s s σ2

σ12 σ ′
12 k

}
. (46)

In an equivalent second form (figure A1,A2 + A3), we have

A2 + A3 = �̃IIa(nαλα, nαλα, nαλα, nαλα,�)
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×[[a(lαs) × ã(lαs)](κ1σ1) × [ã(lαs) × a(lαs)](κ2σ2)](kk)p,−p
+�̃IIb(nαλα, nαλα, nαλα, nαλα,�)[a

(lαs) × ã(lαs)](kk)p,−p, (47)

where

�̃IIa(nαλα, nαλα, nαλα, nαλα,�) = 1
2(−1)k−p[κ1, σ1, κ2, σ2]−1/2

×(nαλαnαλα‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα) (48)

and

�̃IIb(nαλα, nαλα, nαλα, nαλα,�) = (−1)k−p+1(nαλαnαλα‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα)
×

{
κ1 κ2 k

lα lα lα

} {
σ1 σ2 k

s s s

}
. (49)

Both factors�̃IIa(nαλα, nαλα, nαλα, nαλα,�) and �̃IIb(nαλα, nαλα, nαλα, nαλα,�) have
properties analogous to those of�̃I as stated in (45).

(2) Distributionsαβαβ, βαβα, βγαγ , γβγα, αγβδ, γαδβ, βδαγ , δβγα, αδβγ , δαγβ,
βγαδ, γβδα (cases 2, 3, 11, 12, 27, 29, 31, 32, 35, 36, 39, 40 from table 8) (figure A1,
A4, A6):

A4 = �̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �)A6, (50)

where

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p[κ1, σ1, κ2, σ2]−1/2

×(niλinjλj‖g(κ1κ2k,σ1σ2k)‖n′
iλ

′
in

′
jλ

′
j ). (51)

DiagramA6 corresponds to tensorial products of the operators of second quantization for a
two-particle operator (for details see Gaigalas and Rudzikas (1996)).

(3) Distributionsααββ, γ γαβ, γ γβα, αβγ γ , βαγ γ , αβγ δ, βαδγ , αβδγ , βαγ δ,
γ δαβ, δγβα, γ δβα, δγ αβ (cases 6, 15–26 from table 8) (figure A1,A5, A7):

A5 =
∑

κ12σ12κ
′
12σ

′
12

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �)A7, (52)

where

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p+1[κ12, σ12, κ
′
12, σ

′
12]

1/2

×(niλinjλj‖g(κ1κ2k,σ1σ2k)‖n′
iλ

′
in

′
jλ

′
j )

×
{
li l′i κ1

lj l′j κ2

κ12 κ ′
12 k

} {
s s σ1

s s σ2

σ12 σ ′
12 k

}
. (53)

(4) Distributionsαββα, βααβ, γβαγ , βγ γα, αγ δβ, γαβδ, βδγα, δβαγ , αδγβ, δαβγ ,
βγ δα, γβαδ (cases 4, 5, 13, 14, 28, 30, 33, 34, 37, 38, 41, 42 from table 8) (figure A1,
A4, A8):

A4 =
∑

κ12σ12κ
′
12σ

′
12

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �)A8, (54)

where

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p+1+l′i+l′j+κ2+σ2+κ12+σ12

×[κ12, σ12, κ
′
12, σ

′
12]

1/2(niλinjλj‖g(κ1κ2k,σ1σ2k)‖n′
iλ

′
in

′
jλ

′
j )

×
{
li l′i κ1

l′j lj κ2

κ12 κ ′
12 k

} {
s s σ1

s s σ2

σ12 σ ′
12 k

}
. (55)
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(5) Distributionsβααα, αβαα (cases 7, 8 from table 8) figure A1,A5):

A5 =
∑

κ12σ12κ
′
12σ

′
12

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �)

×[a(lβ s) × [a(lαs) × [ã(lαs) × ã(lαs)](κ
′
12σ

′
12)](KlKs)](kk)p,−p, (56)

where

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) ≡ �′(niλi, njλj , n′

iλ
′
i , n

′
jλ

′
j , �)

≡ �(nαλα, nβλβ,�). (57)

WhenĜ(T ) = Ĝ(βααα), then

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p+κ ′
12+σ ′

12+lα+lβ [κ12, σ12]

×[κ ′
12, σ

′
12]

1/2(nβλβnαλα‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα)

×
{
lα lα κ ′

12
κ1 κ2 k

lβ lα κ12

} {
s s σ ′

12
σ1 σ2 k

s s σ12

}

×
∑
KlKs

[Kl,Ks ]
1/2

{
lβ lα κ12

κ ′
12 k Kl

} {
s s σ12

σ ′
12 k Ks

}
, (58)

and whenĜ(T ) = Ĝ(αβαα), then

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p+κ ′
12+σ ′

12+κ12+σ12[κ12, σ12]

×[κ ′
12, σ

′
12]

1/2(nαλαnβλβ‖g(κ1κ2k,σ1σ2k)‖nαλαnαλα

×
{
lα lα κ ′

12
κ1 κ2 k

lα lβ κ12

} {
s s σ ′

12
σ1 σ2 k

s s σ12

}

×
∑
KlKs

[Kl,Ks ]
1/2

{
lβ lα κ12

κ ′
12 k Kl

} {
s s σ12

σ ′
12 k Ks

}
. (59)

(6) Distributionsβββα, ββαβ (cases 9, 10 from table 8) (figure A1,A5):

A5 =
∑

κ12σ12κ
′
12σ

′
12

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �)

×[[[ a(lβ s) × a(lβ s)](κ12σ12) × ã(lβ s)](KlKs) × ã(lαs)](kk)p,−p, (60)

where

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) ≡ �′(niλi, njλj , n′

iλ
′
i , n

′
jλ

′
j , �)

≡ �(nαλα, nβλβ,�). (61)

WhenĜ(T ) = Ĝ(βββα):

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p+κ ′
12+σ ′

12+lα+lβ [κ ′
12, σ

′
12]

×[κ12, σ12]
1/2(nβλβnβλβ‖g(κ1κ2k,σ1σ2k)‖nβλβnαλα)

×
{
lβ lα κ ′

12
κ1 κ2 k

lβ lβ κ12

} {
s s σ ′

12
σ1 σ2 k

s s σ12

}

×
∑
KlKs

[Kl,Ks ]
1/2

{
lα lβ κ ′

12
κ12 k Kl

} {
s s σ ′

12
σ12 k Ks

}
, (62)
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and whenĜ(T ) = Ĝ(ββαβ):

�̃(niλi, njλj , n
′
iλ

′
i , n

′
jλ

′
j , �) = 1

2(−1)k−p+κ ′
12+σ ′

12+κ12+σ12[κ ′
12, σ

′
12]

×[κ12, σ12]
1/2(nβλβnβλβ‖g(κ1κ2k,σ1σ2k)‖nαλαnβλβ)

×
{
lα lβ κ ′

12
κ1 κ2 k

lβ lβ κ12

} {
s s σ ′

12
σ1 σ2 k

s s σ12

}

×
∑
KlKs

[Kl,Ks ]
1/2

{
lα lβ κ ′

12
κ12 k Kl

} {
s s σ ′

12
σ12 k Ks

}
. (63)

The final analytical expressions for diagramA6 appearing in (50), diagramA7 in (52) and
diagramA8 in (54), are obtained after the following graphical transformations.

(i) The second quantization operators are interchanged, until (from left to right) first
come the operators acting upon shellα, then correspondingly uponβ, γ , δ.

(ii) The generalized Clebsch–Gordan coefficient is transformed to match the order of
operators. This is performed by changing the order of angular momenta coupling at some
of the nodes 1, 2, 3 (figure A1,A6, A7 andA8).

We immediately write down the algebraic expressions for diagramsA6, A7 andA8 (of
figure A1) after transforms (i) and (ii) by applying usual generalized graphical technique
(see Gaigalaset al 1985). Also we have to notice that�′ is equal to�̃ with a phase factor,
which is found by transforming the diagram of the tensorial structure according to the rules
(i) and (ii). Only in cases 1 and 7–10 (see table 8) does�′ ≡ �̃, because there is no need
to transform the tensorial structure.

As an example, let us consider in particular the case where the operatoraj acts upon
the first shelln1λ1, operatorai acts upon the second shelln2λ2, and operatorsa†

i ′ , a
†
j ′ , act

upon the third shelln3λ3 (see equation (1)). This is distribution 18 in table 8. We obtain
the algebraic expression for distributionβαγ γ from (52). The two-particle operator for
this distribution can be represented by diagramB1 which is proportional to its tensorial part
(diagramB2) as (figure A2B1, B2):

B1 =
∑

κ12σ12κ
′
12σ

′
12

�̃(n2λ2, n1λ1, n3λ3, n3λ3, �)B2, (64)

where

�̃(n2λ2, n1λ1, n3λ3, n3λ3, �) = 1
2(−1)k−p+1[κ12, σ12, κ

′
12, σ

′
12]

1/2

×(n2λ2n1λ1‖g(κ1κ2k,σ1σ2k)‖n3λ3n3λ3)

×
{
l2 l3 κ1

l1 l3 κ2

κ12 κ ′
12 k

} {
s s σ1

s s σ2

σ12 σ ′
12 k

}
. (65)

We use (i) for diagramB2 (figure A2,B2) then as in expression (64) the order of second-
quantization operators isa(l2s)a(l1s)ã(l3s)ã(l3s), so we change it according to (i) and obtain
(figure A2B1, B3):

B1 = −
∑

κ12σ12κ
′
12σ

′
12

�̃(n2λ2, n1λ1, n3λ3, n3λ3, �)B3. (66)

We use (ii) for diagramB3 then change the sign at the node 1 to finally obtain (figure A2
B1, B4):

B1 =
∑

κ12σ12κ
′
12σ

′
12

(−1)l1+l2+2s−κ12−σ12+1�̃(n2λ2, n1λ1, n3λ3, n3λ3, �)B4
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Figure A2. Diagrams for distributiona(l2s)a(l1s)ã(l3s)ã(l3s). DiagramB1 represents a two-
particle operatorG. DiagramsB2, B3 andB4 represent graphical transformations. Diagram
B2 represents the tensorial part of the two-particle operatorB1 before transformations, diagram
B3 represents this tensorial part after transformation (i), and diagramB4 represents it after
transformation (ii).

=
∑

κ12σ12κ
′
12σ

′
12

�′(n2λ2, n1λ1, n3λ3, n3λ3, �)B4

=
∑

κ12σ12κ
′
12σ

′
12

�′(n2λ2, n1λ1, n3λ3, n3λ3, �)

×[[a(l1s) × a(l2s)](κ12σ12) × [ã(l3s) × ã(l3s)](κ
′
12σ

′
12)](kk)p,−p, (67)

where

�′(n2λ2, n1λ1, n3λ3, n3λ3, �) = �(n2λ2, n1λ1, n3λ3, n3λ3, �)

= (−1)l1+l2+2s−κ12−σ12+1�̃(n2λ2, n1λ1, n3λ3, n3λ3, �)

= 1
2

∑
κ12σ12κ

′
12σ

′
12

(−1)k−p+l1+l2−κ12−σ12+1[κ12, σ12, κ
′
12, σ

′
12]

1/2

×(n2λ2n1λ1‖g(κ1κ2k,σ1σ2k)‖n3λ3n3λ3)

×
{
l2 l3 κ1

l1
l
3 κ2

κ12 κ ′
12 k

} {
s s σ1

s s σ2

σ12 σ ′
12 k

}
. (68)

All the graphical transformations are made and the correspondence between angular
momentum diagramsB2, B3 and B4 in figure A2 and algebraic expressions is defined
according to the graphical approach of Gaigalaset al (1985).

Now, using (67) and (68) we can write down the irreducible tensorial form for the
Coulomb operator with tensorial structureκ1 = κ2 = k, σ1 = σ2 = 0, k = 0 and the
two-electron submatrix element:

(n2λ2n1λ1‖g(kk0,000)
Coulomb ‖n3λ3n3λ3) = 2[k]1/2(l2‖C(k)‖l3)(l1‖C(k)‖l3)Rk(n2l2n3l3, n1l1n3l3).

(69)

From (68) we have:

�′
Coulomb(n2λ2, n1λ1, n3λ3, n3λ3, �) = 1

2

∑
κ12σ12κ

′
12σ

′
12

(−1)l1+l2−κ12−σ12+1[κ12, σ12, κ
′
12, σ

′
12]

1/2
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×2[k]1/2(l2‖C(k)‖l3)(l1‖C(k)‖l3)Rk(n2l2n3l3, n1l1n3l3)

×
{
l2 l3 k

l1 l3 k

κ12 κ ′
12 0

} {
s s 0
s s 0
σ12 σ ′

12 0

}

= − 1
2

∑
κ12σ12

(−1)l2+l3−σ12+k[κ12, σ12]
1/2(l2‖C(k)‖l3)(l1‖C(k)‖l3)

×Rk(n2l2n3l3, n1l1n3l3)

{
l2 l3 k

l3 l1 κ12

}
. (70)

From (67), by (70), we finally obtain the following expression, in second-quantized
form, for the Coulomb operator for the caseα = 1, β = 2 andγ = 3:

B1(Coulomb) = − 1
2(−1)l2+l3+k(l2‖C(k)‖l3)(l1‖C(k)‖l3)Rk(n2l2n3l3, n1l1n3l3)

×
∑
κ12σ12

(−1)σ12[κ12, σ12]
1/2

{
l2 l3 k

l3 l1 κ12

}

×[[a(λ1) × a(λ2)](κ12σ12) × [ã(λ3) × ã(λ3)](κ12σ12)](00). (71)

This kind of operator needs to be calculated when we are considering, for example, the
matrix element

(3s23d2L1S1Q1L2S2Q2LS‖HCoulomb‖3s3d3p2L′
1S

′
1Q

′
1L

′
2S

′
2Q

′
2L

′
12S

′
12L

′
3S

′
3Q

′
3L

′S ′).
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