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Abstract. A general method is described for finding algebraic expressions for matrix elements
of any one- and two-particle operator for an arbitrary number of subshells in an atomic
configuration, requiring neither coefficients of fractional parentage nor unit tensors. Itis based on
the combination of second quantization in the coupled tensorial form, angular momentum theory
in three spaces (orbital, spin and quasispin), and a generalized graphical technique. The latter
allows us to graphically calculate the irreducible tensorial products of the second-quantization
operators and their commutators, and to formulate additional rules for operations with diagrams.
The additional rules allow us to graphically find the normal form of the complicated tensorial
products of the operators. All matrix elements (diagonal and non-diagonal with respect to
configurations) differ only by the values of the projections of the quasispin momenta of separate
shells and are expressed in terms of completely reduced matrix elements (in all three spaces) of
the second-quantization operators. As a result, it allows us to use standard quantities uniformly
for both diagonal and off-diagonal matrix elements.

1. Introduction

In order to obtain accurate values of atomic quantities it is necessary to account for
relativistic and correlation effects. Relativistic effects may be taken into account as Breit—
Pauli corrections or, in a fully relativistic approach, by starting with the Dirac—Coulomb
Hamiltonian and wavefunctions defined in terms of four-component one-electron orbitals.
In both cases, correlation effects may be considered either variationally or perturbatively.
For complex atoms and ions, a considerable part of the effort must be devoted to coping with
integrations over spin—angular variables, occurring in the matrix elements of the operators
under consideration.

Many existing codes for integrating the spin—angular parts of matrix elements (Glass
1978, Glass and Hibbert 1978, Grant 1988, Bueta 1994) are based on the computational
scheme proposed by Fano (1965). In essence, it consists of evaluating recoupling matrices.
Although such an approach uses Racah algebra, it may be necessary to carry out multiple
summations over intermediate terms. Due to these summations and the complexity of the
recoupling matrix itself, the associated computer codes become rather time consuming. A
solution to this problem was found by Burkeal (1994). They tabulated separate standard
parts of recoupling matrices along with coefficients of fractional parentage at the beginning
of a calculation and then used them later to calculate the coefficients needed. Computer
codes by Glass (1978), Glass and Hibbert (1978), Grant (1988), Rtidke(1994) utilize
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the program NJSYM (Burke 1970) or NJGRAF (Bar-Shalom and Klapisch 1988) for the
calculation of recoupling matrices. Both are rather time consuming when calculating matrix
elements of complex operators or electronic configurations with many open subshells.

In order to simplify the calculations, Cowan (1981) suggested grouping matrix elements
into ‘classes’ (see Cowan 1981, figures 13-15). Unfortunately, this approach was not
generalized to all two-electron operators. Perhaps this is the reason why Cowan’s approach
is not widely used although the program itself, based on this approach is widely used.

Many approaches for the calculation of spin—angular coefficients (Glass 1978, Glass and
Hibbert 1978, Grant 1988, Burlatal 1994) are based on the usage of Racah algebra only on
the level of coefficients of fractional parentage. A few authors (Jucys and Savukynas 1973,
Cowan 1981) utilized the unit tensors, simplifying the calculations in this way, because the
tables of unit tensors and selection rules can be used to check whether the spin—angular
coefficients are zero prior to computation. Moreover, the recoupling matrices themselves
have a simpler form. Unfortunately, these ideas were applied only to diagonal matrix
elements with respect to configurations, although Cowan (1981) suggested the usage of unit
tensors for non-diagonal ones as well.

All the above-mentioned approaches were applied in the coordinate representation.
The second-quantization formalism (Judd 1967, Rudzikas and Kaniauskas 1984, Rudzikas
1991 and Rudzikas 1997) has a number of advantages compared with the coordinate
representation. First, it is much easier to find algebraic expressions for complex operators
and their matrix elements, when relying on second-quantization formalism. It has
contributed significantly to the successful development of perturbation theory (see Lindgren
and Morrison 1982, Merkelist al 1985), and orthogonal operators (Uylings 1984), where
three-particle operators already occur. Uylings (1992) suggested a fairly simple approach for
dealing with separate cases of three-particle operators. Moreover, in the second quantization
approach the quasispin formalism was efficiently developed by Rudzikas and Kaniauskas
(1984). The main advantage of this approach is that applying the quasispin method for
calculating the matrix elements of any operator, we can use the reduced coefficients of
fractional parentage whose matrix elements are independent of the occupation number of
the shell. All this enabled Merkelis and Gaigalas (1985) to work out a general perturbation
theory approach for complex cases of several open shells.

Thus, it seems that it is possible to formulate an efficient and general approach for finding
the spin—angular parts of matrix elements of atomic interactions, relying on the combination
of the second-quantization approach in the coupled tensorial form, the generalized graphical
technique and angular momentum theory in orbital, spin and quasispin spaces as well as
the symmetry properties of the quantities considered, which would be free of previous
shortcomings. Gaigalas and Rudzikas (1996) suggested such an approach for finding matrix
elements of any one- and two-particle atomic operator for the case of two open shells of
equivalent electrons. But the situation is different when the matrix elements between more
complex configurations are considered.

An approach for the latter case is described in this paper. One of the main ideas
proposed here allows one to solve the problems related to the more complex configurations.
Namely, we propose applying Wick’s theorem (see Lindgren and Morrison 1982) not in
its usual general form while calculating the matrix elements, but rather only for groups of
operators acting upon distinct shells of equivalent electrons. So, the ordering of operators
generally would not be normal.

It is a universal approach for finding algebraic expressions for matrix elements of any
one- and two-particle operator in the general case of an arbitrary number of subshells
in an atomic configuration, heavily based on the exploitation of the quasispin technique
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and the Wigner—Eckart theorem in quasispin space. Expressions for matrix elements and
recoupling matrices are obtained by first classifying each matrix element into one of four
classes, depending on the number of subshells being acted upon. Each class is then further
subdivided into cases and explicit expressions derived for each case in terms of triangular
conditions, nj-symbols, and reduced matrix elements. From these expressions, efficient
procedures can be developed, that apply tests before performing computation.

Tensorial expressions for any two-particle operator are presented in section 2. They are
based on the underlying assumption that the second quantization operators (both creation
and annihilation), acting on the same open shell, must always be beside one another in
a tensorial product and must be coupled into a resultant momentum. Then the second
guantization operators, acting on the next shell, must follow, etc. Section 3 deals with
the matrix elements between complex configurations. General expressions for recoupling
matrices were found (section 4) by using the modified graphical technique of Jucys and
Bandzaitis (1977), allowing us to graphically calculate the irreducible tensorial products of
the second-quantization operators and their commutators, and to formulate additional rules
for operations with diagrams. The additional rules allow us to graphically find the normal
form of the complicated tensorial products of the operators. All the graphical transformations
we use here are fully described in Gaigalas and Rudzikas (1996).

Exploitation of this new version of Racah algebra based on the angular momentum
theory, on a generalized graphical approach, on quasispin approach, and on the use of
reduced coefficients of fractional parentage for finding the spin—angular parts of two-particle
operators is outlines in sections 5-7. Some details of the calculations are presented in the
appendix.

2. Tensorial expressions for any two-particle operators

In order to be able to find the expressions for matrix elements of the operators studied,
we have to express these operators in terms of the irreducible tensors or their irreducible
products. In this section we will present all the necessary tensorial expressions for any
two-particle operatoG.

First, we express the operator in second-quantization form (Gaigalas and Rudzikas 1996)
as

G= Y Gulnlininil)=3% Y aaalali. jlgli'.j) (1)
n,-l,-,n_,l_,v,n,’li',n/’.ljf i i’ j

where, as is customary, the creation operatgts appear to the left of the annihilation
operatorSaT,af/ before defining the shells upon which the second-quantization operators are
acting. After defining the shells explicitly, the second-quantization operators are transformed
using their commutation relations so that all operators with the seile= [, s) are beside
one another. For example, in the case where the electron creation opgraod electron
annihilation operatoraf, (wherei = n;l;sm;my,) and a}} act upon the same shell, and
operatora; acts upon another shefl, we have:
G(cxﬂaa) _ % Z qlas) g1 lase) [ TUas) ar(’if;gq)%

my, M, m;; my, mja mg,
My Mgy Mg Mg m}d mg, m;; my,
(k1Kk2k ,0102k) / / "o
X (ngrgmi mgnghgmp,mg,|g [ngAgm; mg ngAogm; my ). 2)

Here we imply that a tensorial structure indexed (yxok, o102k) at g has rankk; for
electron 1, ranke, for electron 2, and a resulting rarkin the ! space, and corresponding
ranksoiook in the s space.
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Now, applying the graphical approach of angular momentum theory (Gaigalas
1985), we can get an expression, hamely

Glapaa)y =3 > D (=Dt e P (), nphg || 421 g dgna he)

K12012K1501, P

lo 1o Kip s s 0p,
’ 7 11/2

x[k12, 012l[K10 012 Y K1 K2 K o1 o2 k

S

ly lﬂ K12 s s 012
ly k12 s 5 012
X K[ 1/2 o
Z[ 5_2 k K] 0'12 k I(X
X[a(lﬁS) % [a(lus) % [a(lus) G e s)](Klzalz)](K;K )](kk) (3)

where B, b] = (2a + 1)(2b + 1), (ngranghpllg o192 | n,2,n, ) is the two-electron
submatrix (reduced matrix) element of operatbranda ‘=) is defined as (Judd 1967)

a(l s) _( 1)1 s — mig =ms T(las) (4)

my, Mg _mlu —ms*

Expression (3) has summations over intermediate rafiks;,, K;, K in tensorial product.
The angular momentum projection @fk) is p, —p.

In order to calculate the spin—angular part of a two-particle operator matrix element with
an arbitrary number of open shells, it is necessary to consider all possible distributions of
subshells, upon which the second-quantization operators are acting. These are presented in
table 1. We point out that for distributions 2-5 and 19-42 the shells’ sequence numpers
y, 8 (in bra and ket functions of a submatrix element) satisfy the conditieng < y < 4,
while for distributions 6—18 no conditions upen 8, y, § are imposed.

Let E be an array of intermediate coupling parameters in tensorial form, including
K12, 012, K15 01, and also possibly others. Then the tensorial expressions for all these
distributions can be grouped into four classes, where in each class, the two-particle operator
G, operating on specific shells (see equation (1)), has one of the following four forms.

(1) All the second-quantization operators act upon the same shell (distribution 1) and

G~ Y DY emrBAL (L B). (5)
K12,012,K15,01, P
(2) The second-quantization operators act upon the two different shells (distributions 2—
10) and

GUD~ > Y OMara.nprp, BB (ngiy, B) x CY272) (nghg, B)]5Y,.
Klz.(flz.l(l/_z,(flz P
(6)
(3) The second-quantization operators act upon three shells (distributions 11-18)
GUII) ~ Z Z@(naka, nghg, nyhy, E)
K12,012,K75,01, P

X[[D(l «8) ¢ D(lﬂY)](’ﬂZalZ) % E(K12‘712) (I’l )L , L‘)](kk) (7)
(4) The second-quantization operators act upon four shells (distributions 19-42) and

GUVY~ 3 Y OWahas nphp.nyhy. nsks, E)

K12,012,K15,015 P

X[[D(Ias) x D(lﬁs)](KIZ‘HZ) x [D(IVS) X D(ISS)](Kizﬂllg)];)likjp. (8)
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Table 1. Distributions of subshells, upon which the second-quantization operators are acting,
that appear in the submatrix elements of any two-particle operator, when bra and ket functions
haveu open subshells.

No & a d a]'.f, Submatrix element

1 o o o o (. naa . ||G(n l,n]ljn” ]l])ll naa )
2 B a B
3 8 a B o C..madd.ngly? o)
4 o B B a Gln nlll’n/’l/)
5 B a o B ||...nazaw...n,gzﬁ"...)
N, A - Ng+2
6 o o BB C.nda . nply” NGl ngly® 2...n,31ﬂﬁ )
7 B o o o
8 o B @ o (..madd.ngly’ |
9 B B B o Gnilinjlinilin ;lj) -
10 8 B a B lenaldngl" )
11 g v « vy
12 y B vy o (...nalé\’“nﬁlgﬁnylm o
13 y B « y G(nilinjl nlll’n}l ) )
N.
4 gy oy a nadd el gy )
Ng Ny A
15 y oo B Coonaldengly” r]lvylyl ) ||G§n ilinjlinlin 17
16 v vy B eenadd gl a1 )
Ng Ny A
17 « B y (...nalév”nﬁlﬁ r]lv,,ly1 . ||G§n ilinjl; nll, ,l,)
18 B o vy y I .nalév‘rlnﬂl n, INV )
19 « B y 8
N, N.
20 B a vy ) (gl nﬁlﬁﬂnyl},ynal?]" I
21 « B ) y Gnil; n,l nlll /Z/) )
22 B a5y lnadd gl g 1) st
23 y 8§ o B
24 5 1Y n g, 10 st
14 B (o4 (Anotmnﬁﬁ”yy n&a”
25 4 y o« B G(nilinjl; n,ll/n;lj)
+1 N, -1 Ns—1
26 5 vy B a |ngldet zﬁ“ ny by sl h
27 « y B 8
Ne, Np Ny Ns
28 « y ) B (flala nﬁlﬁ nyl, " nsls? ||
29 y a 8 B G(nilin;l; nlll’n;l])
30y a B8 lmald gy ) sl
31 B 4 o y
2 5 1Yen gty n, 10 st
3 B Y o (naa”ﬁﬁ”}/y "55”
33 B & y o G(n,lln,l,n,ll/n;l])
3 5 B oy lnadd gy e b st
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Table 1. (Continued)

Submatrix element

S
i

No a a a

~7

35 « 8 B y

36 5 o y B (addnplyny) nsl) |

3 o« 5y B GoulimlinInll)

38 § a B y Hnalév"7lnﬁl;3vﬂ+lnyl,1/vy+ln(gl§]rl)
39 8 y o 8

O y B 5 o (uldnply )" nsl)’|

41 B y 8 o G(nilinjljn;l;n}l;)

2y B a8 mald gl ) sl

In (5)—(8), ®(ni, B), ..., O(ngry, ngrg, nyr,, nsisE) are proportional to the radial
part of the operatoG, and A (nx, ), ..., E¥)(nx, E) denote tensorial products of
irreducible tensors. Paramet&rimplies the array of coupling parameters that conrect
to the tensorial part. The explicit tensorial expressions are presented in the appendix, using
the graphical approach of Gaigalasal (1985). Graphical methods make it possible to
reduce the number of expressions from 42 to 6 for all distributions presented in table 1.
Such a joining up of several distributions is possible by graphical means, because in the
graphical technique of Jucys and Bandzaitis (1977), as in the tensorial products of operators
of second quantization, the main elements are the Clebsch—Gordan coefficients. Therefore
we may join up all the distributions having essentially the same algebraic structure, although
with different tensorial products. The latter are represented by diagrams in which all the
peculiarities of a tensorial product are seen, and the differences of particular distributions
are easily noticed. The use of other graphical methods (see e.g. ¥itais1962 or
Lindgren and Morrison 1982) in joining up the distributions is complicated, since there
the Wigner coefficients play the main role, and these are not fully compatible with the
graphical transformations of the operators of second quantization in coupled form. Having
classified the operators, we will now consider matrix elements of these operators for arbitrary
configurations.

3. Matrix elements between complex configurations

Now, having the irreducible tensorial form of the operator being considered, we are in a
position to find their matrix elements and recoupling matrices. Suppose that we have a bra
function withu shells inLS-coupling:
YEHLSM L M) = (nilanalz . .. nyl, 01 L1S101M p,02L25,Q2M g,

o0, L, S, QuMp, ALSM | M| 9)
and a ket function:
YL S' M) M) = |nylanals . . . n, Loy L1 S) Q1 My oy L5S,05M ),

v, LS, Q My A'L'S'M) M) (20)

where A stands for all intermediate quantum numbers, depending on the order of coupling
of momentaL;S;. Label Q; is the quasispin momentum of the she»ul.N", which is related
to the seniority quantum numbef, namely, O; = (2/; + 1 — v;)/2, and its projection,
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My, = (N;—2; —1)/2. In (9) and (10)¢; denotes all additional quantum numbers needed
for the classification of the energy levels of the relevant shell.

Using the Wigner—Eckart theorem ihS space we shift from the matrix element of
any two-particle operatolG between functions (9) and (10) to the submatrix element
(WPRA(LS) |G|y (L’ S")) of this operator.

A general expression for the submatrix element of any two-particle operator between
functions (9) and (10) witlhx open shells can be written as

WILSIGIPE L) = Y D D =DRO ik nyhy ik nin, B)

Y T
nili,njly nili nili k12,012,615,01,

X T (nihi, njhg, mpd), mia, AP AR B 1) x ROy, Ay, A, 4G, AP AR T)
(11)

where AP = (L;S;, L;S;,L.S], L}S]/.)bra is the array for the bra function shells’ terms, and

similarly for AKXt This expression is similar to equation (136) of Grant (1988) used in
his derivation. So, to calculate the spin—angular part of a submatrix element, one has to
compute the following.

(1) The recoupling matrixR(Ai,Aj,kg,A},Abra, A*®UT).  This recoupling matrix
accounts for the change in going from matrix eleme(rgit}}ra(LS)||G||wb'je‘(L/S’)),
which has u open shells in the bra and ket functions, to the submatrix element
T(nii, njhj, nA;, nix;, AP AL 2. T), which has only the shells being acted upon by
the two-particle operator in its bra and ket functions.

(2) The submatrix elemertt(n;A;, njA;, njA;, nji}, Aba Aket = 1) which denotes the
submatrix elements of operators of the typ&$ ) (nx, 2), B (na, 8), C*)(na, 8),
D, E®)(ny, B) (see (5)—(8)). Herd refers to the array of coupling parameters
connecting the recoupling matriR(x;, A;, A}, A}, APa AKet 1y to the submatrix element.

(3) Phase facton.

(4) @’(ﬂi)\,‘, nj)»j, nix

[ A

n’2’, ), which is proportional to the radial part and corresponds

to one of®@(nA, B), ..., O(ngra, nghg, nyhy, nshs, B). It consists of a submatrix element
(n,»kinjkj||g(K1K2"~”1”2k>||n§k§nj/.k}), and in some cases of simple factors ang-8oefficients.

For instance, for the distributionsxpg, yyaB, yyBa, aByy, Bayy, aBys, Bady, aBdy,
Bays, ydapB, SyBa, ydBa, Syap (see expressions (52), (53) and notessairand® in the
appendix) it is:

O (nihi, njhj, ikl A, B) = (=1 Oy, njkj, njh;, niX;8)

[ [

_ %(—1)k_p+l+l(’”li)\inj)h_j ”g(Kﬂ(zk,szk) ||n;A:n;)L;

l; I 1 s s o1
’ 7 11/2
x[k12, 012, K19, 01212 1 I k2 s s o2y, (12)
K12 IC:/|_2 k 012 ‘71/2 k

where the integer determining the phase depends upon the configuration states involved.
Rules for its determination are given in the appendix.

The calculation of®’(n;A;, njA;, njA;, niA;, E) is straightforward (from an angular
momentum point of view) and depends on the radial form of the operator. In the next
sections we will describe expressions for the recoupling matrix, the submatrix elements,

and the phase factor, respectively.
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4. Recoupling matrices

In this section we present the expressions for the recoupling matrices
R(Ai, Ago Mj, My, AP AR T,
These matrices may be treated in the orhitahd spins spaces separately. That is,
R(his hjo A, Ay AP AR = R(G 1, 1L 1 AP Af®U TR, s,s,s, AP AN TY)
(13)
where AP = (L;, L;, Lj, L}))*® and AP = (S, 5, S}, )™ Therefore, for simplicity
we present only the expressionsl/ispace. The recoupling matrices srspace are easily
obtained from analogous expressionsl/irspace by making corresponding substitutions
li,lpy ...,y = s; Ly — 81, L = S2;...5 Lia = S12, ..., L1231 —> S123.0-1; L — S,
L' — §'. Also, the analytical expressions for recoupling matrices presented in this section
are valid in the case ofj-coupling.
As we have mentioned earlier, there are four classes as defined by equations (5)—(8),

we will consider each class separately. All the expressions presented below are obtained by
using the approach of angular momentum theory described by Jucys and Bandzaitis (1977).

4.1. One interacting shell

Let us assume that the operators of second quantization act upor siseith distribution 1
of table 1, where: = «. Then the recoupling matrix has the expression:

R(la Loy k) = [L)"Y28(L1, LY) .. 8(La—1, L,,_)8(Lat1, Ll 1) ... 8(Ly, L))

8(Ly, L7, k); foru=1
C1; foru=2
C1Cak,a+ 1, u — 1)Cs; fora <3,u>2
X , , (14)
S(lea le) e S(le...a—la L12___a_1)
xC1Co(k,a+1,u — 1)Cs3; fora>3,a#u,u>2
8(L12, LEI.Z) e S(le..a—l, L;.Z...a—l)c3; fora = u,u > 2.

In the above, the notatio®(L, L7, k) means the triangular conditioil; — L] < k <
L;+ L} and

(15)

C1= (=1[L,, T2 { koly L } ,

J T T

where the values of parameteps J, T and T’ present in expression (15) are given in
table 2. The remaining two coefficients are

kmax

Ca(k, kmin, kmax) = 1_[ (_1)k+L[+L12”[71+L52""[L12..i—1, L/12..‘i]l/2

i=kmin
k Liy ;4 Li.i-1].
A e o
and
, kK J J
c3=(—1>“’[J,T]1/2{j T T,}; (17)

where the parameters j, J, J/, T andT’ are given in table 3.
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Table 2. Parameters for equation (15).

u a 1) J T T

2 1 L1+2L/1—L2—L/+k Lo L L

2 2 Li+L+L5+k L1 L L'
ut2 1 Li+2L) —Lo— L, +k Lo Lio Liz
u#2 2 Li+Lip+L5+k Ly Li> L,
u#2 a>2 Lizg1+Lliza+L,+k Li2ge1 Liza Ly,

Table 3. Parameters for equation (17).

u 1) Jj J J' T T
u 75 a k+Ly,+ Lz y-1+ L' Ly Li2 y-1 LéI.Z..Aufl L L
a k—Lip y-1+2L,+L,—L Lio 1 Ly L, L L

When the total rank = 0, the recoupling matrix becomes simply

R(ly, Ly, 0) = 8(L1, LY)8(Lo, LY)8(La2, L) ... 8(Lg—1, L)1)
x8(L12.a-1, Ly 4 1)8(La, L)8(L12 4y Ly )8(Lag1, L)1)
x8(L12.a+1, L9 4p1) - - 8(Lyu, L)S(L, L") (18)

expression (18) is equivalent to (13.60) of Cowan (1981).

4.2. Two interacting shells

In this case let us assume that the operators of second quantization act upon the amells
b (distributions 2—10 in table 1, where for distributions 2+5= «, b = B8 and for others
(6—10)a = min{«, B}, b = maX{«, B8}). Then
Rla; Las Iy, L, €12, K12, k) = (=1)°[Lay Ly)28(La, L)) .. 8(La-1, L)

X8(Lay1, Llyyq) ... 8(Lp—1, Lj,_1)8(Lpga, Ly q) ... 8(Ly, L)

Ca(K12, K k, 1) Ca(k, 3,1 — 1)C3; fora=1,b=2
C1C2(K1z,a + 1, b — 1)Ca(K12, K15, k, 1)
xCo(k,b+1,u —1)Cs; fora<3,b>2,b#u
C1C2(K1z,a + 1, b — 1)Ca(K12, K k. 1); fora<3,b=u
x § 8(L12, Lyy) ... 8(L12.a-1, Ly, ,_1)C1 (19)
xCa(K12,a 4+ 1,b — 1)Ca(K12, K15, k, 1)
xColk,b+ 1, u—1)Cg; fora>3,b>2,b#u
8(L12, L) ...8(L12.a-1. L5 4 1)C1
xC2(K12,a +1,b — 1)Cs(K12, K1 k., 1); fora>3,b=u
where
0 fora < B
¢ = (20)

K12+K12—k for a > B,
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Table 4. Parameters for equation (21).

P a b u J1 Ji Jo Jz/ J3 Jé

1 1 2 utb L1 L) L, L, L Lo
1 1 2 b L1 L L, L, L L

1 a#l b#2 b Liu1 Ly .4 L L, L L

1 in all other cases Lip1 Ly ,4 Ly L, Lis L},
2 in all cases Lyc1 Ly ., Lo L, Li. Lj_

Table 5. Parameters for equation (23).

P Case J1 Ji J2

1 a=landb=2 L, L, Li2.p

1 b#u Lipa1 Ly, 1 Lizs

1 b=u Lipa Ly, L

2 cFu Li c-1 L/l,..c—l L1z .

2 c=u Lic1 Ly ., L

3 d#u Lig1 Ly 41 Liza

3 d=u Lyag1 Ly, L

and

Ik oh

Caky, ko, k, P) = [J1, Jo, J5 K1Y2 1 Ty ko Ja ¢ (21)
5ok Js

The values of parametets, J;, Jo, J;, J3 and J; present in expression (21) must be
taken from table 4. For the case< g in equation (19)K1, = k12, K7, = k7, and when
o > ,3, thenKlz = Kiz, K:;.Z = K12.
When the total rank = 0, andx1> = k7, = k, the recoupling matrix has the form:
R(lg La.lp. Ly, k. k,0) = [Lq, Ly, K]728(L1, L)) ... 8(La—1. L,_y)
X8(Lay1, Ly q) ... 8(Lp—1, Lj,_1)8(Lpga, Ly, q) ... 8(Ly, L)
x8(L12, L1p) ... 8(L12 a-1. Ly 4 1)8(L12.», L1 ) ... 8(L, L")

Cs(1); fora=1,b=2
C1Cak,a+1,b—1)Cs(D); fora <3 22)
S(le, L/lz) cee 5(L12..a—1, L/12,,,a_1)
xC1Cz2(k,a+1,b — 1)Cs5(1); fora > 3,
where
Cs(P) = (~DfhH T gy, L] { v } . (23)

The values of parameters, J; and J present in expression (23) must be taken from
table 5.

Formula (22) has no analogue in Cowan (1981). Our expressions for the recoupling
matrix do not depend on coefficients of fractional parentage and have no intermediate
summations. Therefore they will be very convenient for practical calculations.
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Table 6. Parameters for equation (24).

Case a b c ¢ K1 K> K3 Ce

a<f<y o B y O ki k2 ok 8(j12,k12)

B<a<y B a vy kitka—k12 ka ki ok 8(j12,k12)

B<y<a B y « O ko k1, k1 Cglicip k2, ji2, ki, k. k12)
a<y<B o y B kitk -k ki ki k2 Cgliig k1, ji2, ko, k, k12)
y<a<f vy a B 22atk—kiptki,—j12 K, ki ke Cgliis ki, ji2, ko, k, k12)
y<B<a vy B o kitka—rk12 ki, ko k1 Cgliip k2, ji2, ki, k, k12)

4.3. Three interacting shells

When the operators of second quantization act upon three ghéllsand ¢ (distributions
11-18 in table 1), we have:

R(las Las lys Ly, Le, Le, k1, ko, k12, K19, k) = [Lay Ly, L] ™Y28(La, 1Y) - 8(La1, Ly )
X8(Lgt1, L;+1) ...0(Lp_1, L;_l)S(LbH_, L;,_H_) ...0(Le—q, L;_l)
x8(Leyt, Liyg) .. 8(Lus L) Y (=1)%Cs

J12

C4(K1, K2, j12, 1)C2(j12, 3, ¢ — 1)

X Cq(j12, K3, k, 2)Co(k,c + 1, u — 1)Cg; fora=1,b=2

C1C2(K1,a + 1, b — 1)Cy(K1, K2, j12, 1)

xC2(j12, b + 1, ¢ — 1)Ca(j12, K3, k, 2)

X xColk,c+1,u—1Cz; fora <3 (24)

8(L12, L) ... 8(L12.q-1, L5 4 1)C1

xXCa(K1,a+1,b—1)Cy(Ky, K2, j12,1)
xCa(j12, b+ 1, ¢ — 1)Cs(j12, K3, k, 2)
xColk,c+ 1, u—1DCs; fora > 3,

where parameters, b, ¢, ¢, K1, K2, K3 and coefficientCs are given in table 6. The
coefficientCg(ky, ka, ks, ka, ks, ke) iS

Ch(ky, k. ks, ka, ks, ko) = (—LyahakotZispy gz [k ke ksl o,
ks ks kg

From (7) we have that in expressions (24) and (25) the rapnks iy, k» = Ig.
When the total rank = 0, andx1> = k7, = k, the recoupling matrix has the form:

R(la, Las by, Ly, 1o, Loy k1, ko, ky k, 0) = (=1)¢[Ly, Ly, L., K3]7*?
x8(L1, LYy) ... 8(La—1, L, )8 (L1, Lly1) - 8(Lp—1, L},_7)
x8(Lps1, Lyyq) .o 8(Le—1, Ll_)8(Lesa, LLoq) ... 8(Ly, L))
x8(L1z, L1p) .. 8(L1z2.a—1, L1y 4 1)8(L12 e, Ly ). 8(L, L)
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Table 7. Parameters for equation (26).

Case Ie K1 Ko K3
a<B<y O k1 ko k
B<a<y k1+ky —k ko k1 k
B<y<a 2k ko k k1
a<y<pB ki—kx—k ki k ko
y<a<pB 2 k k1 ko

y<B<oa kitket+k k ke ki

C4(K1, K7, K3, 1)C2(K3,b+1,¢c — 1)C5(2); fora=1,b=2
C1Co(K1,a+1,b — 1)Cs(Ky, K2, K3, 1)
Co(K3, b+ 1, ¢c—1)Cs(2); for 3
» xCa(K3 c—1Cs5(2) a< (26)

8(L12, L) ... 8(L12.4-1, L, ,_1)C1
xXCo(Kq,a + 1,b— 1)C4(K1, K>, K3, 1)
xCa2(K3, b+ 1,¢c—1)Cs5(2); fora >3

where the parametets K, K», K3 values are given in table 7.
The recoupling matrix for three interacting shells (26) has the same advantages as the
equivalent quantity, equation (22), for two shells.

4.4. Four interacting shells

When the operators of second quantization act upon four shells,c andd (distributions
19-42 in table 1), we have:

R(la, Lo, 1y, Ly, le, Le, Ly, Ly, ka1, k2, k12, k3, ka, k5, k)
=[La Ly, Le, La)728(La, LY) . 8(La-1, L), 4)
x8(Lay1, Llyq) .. 8(Ly-1, Ly D8(Lps1, Lyyy) .. 8(Le1, L._y)
X8(Leta, L/c+1) ...6(Lg_1, L;fl)S(LdJrl, L/d+1) ...0(Ly, L;)
Ca(ka, k2, k12, D) Ca(k12, 3, ¢ — D) Cr(c, d)
xColk,d+1,u — 1)Cg; fora=1,b=2
C1Cokr,a+ 1, b — 1)Cy(ky, k2, k12, 1)
xCo(k12,b+1,¢c — 1) C7(c,d)
X xColk,d + 1, u — 1)Cg; fora <3 (27)
8(L12, L5)...8(L12 -1, L1y 4 1)C1
X Calk1,a +1,b — 1)Ca(ka, ko, k12, 1)
xCa(k12, b+ 1, c — 1)C7(c, d)
xColk,d +1,u —1)Cs; fora > 3,
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where
> Ca(HCro(D), for kmax— Kmin = 1
1
I I, I i 1 I for — kmin = 2
C7(kmin, kmax) = IZIIZZCB( 1)Co(11, I2, kmin + 1) C10(12), Or kmax — Kmin
> Y Ca(1)Caall, 1) Cro(l2); for kmax — kmin < 2
I I
(28)
Cs(I) = (=12t [Lo I, L 1. Ly, JY?
ks L. L. } { Ly, . K12 Li2 .1
X c 12..c—1 -C , 29
{le..c—l L. 1 I L, Ly, (29)
Co(Ih, Ip, i) = (_1)2(11+L/')+L12..[+L,]_2...i+k3+K12[L12”1,_1’ I, I, L/12..i]1/2
Lipi1 h ka||Lyp,q I k12
% h , 30
{ b Ly L I Ly, ; Li (30)
Cro(I) = (—1)2UHkaFhatirztiiptktLiz.atLip g+ La+LitLip 4oy
x[k12, K490 Las I, Ly 4o L1z g-1]"? Z(—l)"[x]
X
o 1 Kio X 1 Kio X
k Liy 44 k2] |ka Liza1 ks
Liz.a1 ks X } { Ly gq K X }
X , . 31
L, Lio.g Lg Lipa Ly Ly, (31)
Cua(l, bp) = (=D 2+ ey, BIY2 Y [x]Ca(x, e +1,d = 1)
X
k3 K12 X k3 K12 X
X . 32
Ly, . Lo, h|Llyp 41 Liza1 D (32)

From (8) we have that in expressions (27) and (30)—(32) the vanksl,, ko = Ig, ks =1,,

kg =Is.

When the total rank = 0 andk1, = «7, = k, the recoupling matrix has the form:

R(lu, Las Ly, Ly, Lo, Ly La, La, ka, ka, k, ka, kg, k, 0)
=[La Ly, Le, L)y, K7Y28(L1, L)) ... 8(La—1, L, )
x8(Las1s Llq) - 8(Ly-1, Ly )8(Lpy1, Ly q) - ..
X oo o8(Le-1, L. )8(Les1, LLiq) - 8(La—1, LYy_y)
x8(Lat1, Ly 1) ...8(Ly, L))

x8(L12, L) ... 8(L12.a-1. L7y 4 1)8(L12.a. Lyy o) ... 8(L, L")
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Calky, ko, k, 1)Calk, b+ 1, ¢ — 1)

X Cylk, k3, kg, D)Co(ks,c+1,d — 1)

x Cs(3); fora=1,b=2
C1Cok,a+1,b — 1)Cy(ky, ko, k, 1)

X Calk, b+ 1, ¢ — 1)Calk, ka, ka, 2)
x (33)

xCa(ks,c+1,d — 1)Cs(3); fora <3
8(L12, L) ...8(L12. 4-1, L5 4, 1)C1

X Colk, @ + 1, b — 1)Calky, ko, k, 1)

xColk,b+ 1, ¢ —1)Cy(k, k3, ks, 2)

X Calka, ¢ +1,d — 1)Cs(3) for a > 3.

Expression (33) also has no analogue in Cowan (1981).

Thus, we have studied all possible cases of matrix elements of arbitrary two-electron
operators. The expressions for recoupling matrices ((22), (26) and (33)) obtained in this
section are simpler and, thus, more convenient for practical applications, than those of
Cowan (1981), except for the simplest cdse 0 of an operator acting on one shell (18),
where they are equivalent.

5. Calculation of tensorial quantities

In this section we will consider the submatrix elements
T (niki, njhg, miAj, nid;, AP® AR B T)

appearing in (11). Taking into account the fact that operadfj?sanda“) are components

of the tensom,ﬁ?q%, having in quasispin space the rapk= 1 5 and projectionsn, = :I:%, i.e
( A) (gr) ’ , - ,
"m =al) anda’’] L = = alls) the operatorsA®)(nx, ), B*)(n1, 8), C*)(na, 8),

DU” E®)(ny, B) (see (5)—(8)) in our case correspond, respectively, to the following five
expressions:

r
a,, (34)
(ql) (ql) (K101)
[a, x a,i”] (35)
[a fﬂ») [a q)») X a (/)L)](Kltn)]('(zﬂz) (36)
mg1 mg2 mg3
[[a @2 o ql)](lﬁtﬁ) 61?»)](16202) (37)
mg1 qu mq3
A A A S kk
[[a(qql) % a(q )](Klo'l) [a;(r?,,a) ’S;JqA)](Kzaz)]( ). (38)

We will discuss the derivation of submatrix elements of these operators, and present the
expressions for these quantities. It is worth noting that these tensorial quantities all act upon
the same shell. So, all the advantages of tensor algebra and the quasispin formalism may
be exploited efficiently.

We obtain the submatrix elements of operator (34) by straightforwardly using the
Wigner—Eckart theorem in quasispin space:

N QLS|al™ |INo' Q'L'S") = —[0] 7V [ ¢ vz

vy Afg] (2 QLSla"lia’ Q'L'S).

(39)
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where the last multiplier in (39) is the so-called completely reduced (reduced in the quasispin,
orbital and spin spaces) matrix element. The coefficient

[ i J2 j}
m; my m
is a Clebsch—Gordan coefficient. Different notations for it appear, for examrﬁfljéfm in
Eckart (1930),5;,” . in Wigner (1931),(j1j2mam2| j1j2jm) in Condon and Shortley (1935)
and Judd (1967).

The value of the submatrix element of operator (35) is obtained by basing our

development on (33), (34) of Gaigalas and Rudzikas (1996). In the other three cases
(36)—(38) we obtain them by using (2.28) of Jucys and Savukynas (1973):

" a QLS||[F“ (i) x G272 )] * |nlV o/ Q'L'S') = (—1)"HSHHS T 4]
x Z (nINa QLS| F“V (n) |nlN o Q"L"S")

a// Q//L// S//
x (N o Q"L"S"|G*2% (nA) |nlY o’ Q'L'S")
K1 k2 k o1 oo k
X {Ll L L//} { S/ S S// } ’ (40)

where F® o0 ny), G%)(n)) is one of (34) or (35) and the submatrix elements
correspondingly are defined by (39) and (33), (34) of Gaigalas and Rudzikas (1996.
defined by the second-quantization operators occurring‘iff?) (n1) and G2 (n)).

As is seen, by using this approach, the calculation of the angular parts of matrix elements
between functions withk open shells is reduced to requiring the submatrix elements of
tensors (34) and (35) within one shell of equivalent electrons. As these completely reduced
submatrix elements do not depend on the occupation number of the shell, the tables for
these quantities are considerably reduced in size in comparison with the tables of analogous
submatrix elements of tensorial quantitié$, V**2 (Jucys and Savukynas 1973) and the
tables of fractional parentage coefficients.

6. Phase factor

In this section we present the phase factars (11), which appear for submatrix elements
of operators in equations (5)—(8).
For distributions 1-6 (table 1):

A=0. (41)
For distributions 7-18 (table 1):

j-1
A=1+) N (42)
k=i

where ifo < 8, theni = «, j = B, and ife > B, theni = B8, j = «; N; is the
occupation number of a shell of equivalent electrons having the kabEbr distributions
19-42 (table 1):

p-1 5—1
A= "Ni+ )Y N (43)
k=a k=y
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7. Spin—angular part of any two-particle operator

In the previous sections, all the expressions required calculating the spin—angular part of any
two-particle operator given. For convenience, the structure of the expressions (the numbers
of the corresponding formulae) are summarized in table 8 for each distribution given in
table 1. The classification numbers of the distributions are presented in the first column
of table 8. The equation number of the tensorial expression of the two-particle operator
G is given in the second column, and the equation number of the tensorial class of the
two-particle operator, denoted Ky(7), in the third column.

The next four columns give the numbers of the formulae of the tensors, which act inside
the shell. A tensor acting upon theshell is given in thax column, and in the columns
B, y, s—upon theg, y, § shells, respectively. Consequently, if we want to find submatrix
element,T (n;A;, njA;, njA;, nid;, AP AR, T), first we have to calculate the submatrix
element of the tensor from columnbetween functions, consisting only of theshell, and
then to look for the submatrix element of the tensor from colysnbetween functions,
consisting only of the3 shell, etc. Thus, we need to calculate only submatrix elements of
the tensors acting upon a certain shell. The details of the calculation of these submatrix
elements were discussed in section 5.

The coefficients® are given in the® column. The numbers of expressions for the
recoupling matrixR (A;, A;, A}, A}, AP AKX T) and phase facton are given in the last
two columns. From this table it is easy to derive the general formulae for spin—angular
parts of matrix elements of any two-particle operator.

8. Conclusions

The approach to matrix element evaluations that we present, is based on the combination
of the angular momentum theory as described in Jucys and Bandzaitis (1977), on the
concept of irreducible tensorial sets (Judd 1967, Rudzikas and Kaniauskas 1984), on a
generalized graphical approach (Gaigadaal 1985), on the quasispin approach (Rudzikas
and Kaniauskas 1984), and on the use of reduced coefficients of fractional parentage
(Rudzikas 1991, Rudzikas 1997, Judd 1996). All this, in its entirety, introduces a number
of new features, in comparison with the following traditional approaches.

(1) The tensorial expressions of a two-particle operator, presented in section 2, allow
one to exploit all the advantages of a new version of Racah algebra based on quasispin
formalism when the latter is applied within each particular shell only. In particular, this is
not only a reformulation of spin—angular calculations in terms of standard quantities, but
also the determination beforehand from symmetry properties, of which matrix elements are
equal to zero without performing further explicit calculations. That is determined from the
submatrix elements (n;A;, n;i;, njAl, niA;, AP@ AR B, T).

(2) It enables one to use the Wigner—Eckart theorem in quasispin space. This provides
an opportunity to use tables of reduced coefficients of fractional parentage and tables of
other standard quantities (section 5), which do not depend on the occupation number of a
shell of equivalent electrons. Thus, the volume of tables of standard quantities is reduced
considerably in comparison with the analogous tables of submatrix elements of tensorial
operatorsU*, V¥ and the tables of fractional parentage coefficients. This undoubtedly
makes the inclusion of shells of equivalefitelectrons with arbitrary occupation numbers
considerably easier, and the process of selecting the standard quantities from the tables
becomes simpler.

(3) The tensorial form of any operator presented in section 2 allows one to obtain
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Table 8. Scheme of the expressions for matrix elements of any two-particle operator.

No. G GT) « B y B 6} R A
1 44 () — — — (@45 14,18  (41)
47 ) 3 — — — (48,49 (149,18 (41)
2 (50) (6) 3 () — — (51) 19, (22 (41)
3 (50) (6) (3) (3 — —  (51) 19, (220 (41)
4 (54) (6) (35 (3 — —  (55) 19, (22 (41)
5 (54) (6) (3% (3) — —  (55) 19, (220 (41)
6 (52) (6) (3) (35 — — (53) 19, (22 (41)
7 (56) (6) (36) (34) — — (58) (19,22 (42)
8 (56) (6) (36) (349 — — (59 19, (22 (42)
9 (60) (&) B4 @ — — (62 19,22 (42
10  (60) (6) (349 (37) — — (63 19, (22 (42)
11 (50) (7) (34 (34 (35 — (51) (24, (26) (42)
12 (50) (7) (34 (34 (35 —  (51) (24, (26) (42)
13 (54 () (34 (34 (35 — (55 (24, (26) (42)
14 (54 (7) (34 (34 (35 —  (55) (24),(26) (42)
15 (52) (7) (34 (34 (35 — (53) (24, (26) (42)
16 (52) () (34 (34 (35 — (53 (24, (26) (42)
17 (52) () (34 (34 (35 — (53 (24, (26) (42)
18 (52) (7) (34 (34 (35 — (53) (24, (26) (42)
19 (52) (8 (39 (34 (34 (34 (53 27, (33 (43)
20 (52) (8) (34) (34) (34) (34) (53) 27),(33)  (43)
21 (52) (8) (34) (34) (34) (34) (53) (27),(33)  (43)
22 (52) (8) (34) (34) (34) (34) (53) 27),(33)  (43)
23 (52) (8) (34 (34) (34) (34) (53) 27),(33)  (43)
24 (52) (8 (3%9) (34 (34 (34 (53 27,33 (43)
25  (52) (8) (34) (34) (34) (34) (53) (27),(33)  (43)
26 (52) (8 (3%9) (34 (34 (34 (53 27,33 (43)
27 (50) (8) (3%9) (34 (34 (34 (B 27,33 (43)
28  (54) (8) (34) (34) (34) (34) (55) 27),(33)  (43)
29  (50) (8) (34) (34 (34) (34) (51) (27),(33)  (43)
30  (54) (8) (34) (34) (34) (34) (55) (27),(33)  (43)
31 (50) (8) (39) (34) (34) (34) (51) (27),(33)  (43)
32 (50) (8) (39) (34 (34 (34) (51) (27),(33)  (43)
33 (54) (8) (34) (34) (34) (34) (55) (27),(33)  (43)
34 (54) (8 (39 (34 (34 (34) (59) 27,33 (43)
35 (50) (8) (39 (34 (34 (34 (B (27, (33 (43)
36  (50) (8) (39) (34) (34) (34) (51) (27, (33 (43)
37 (54) (8 (39) (34 (34 (34) (59) (27, (33 (43)
38 (54) (8) (34) (34) (34) (34) (55) (27, (33  (43)
39 (50) (8) (34) (34) (34) (34) (51) (27),(33  (43)
40 (50) (8) (34) (34 (34 (34) (51) (27),(33)  (43)
41 (54) (8) (34) (34) (34) (34) (55) 27,33 (43)
42 (54 (8 (39) (34 (34 (34 (59) (27, (33 (43)
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simple expressions for the recoupling matrices (section 4). Hence, the computer code
based on this approach would immediately use the analytical formulae for recoupling
matricesR(%;, A;, A}, A}, AP AXeU T, This feature also saves computing time, because

(i) complex calculations leading finally to simple analytical expressions (Bar-Shalom and
Klapisch 1988) are avoided, and (ii) a number of momenta triads (triangular conditions)
can be checked before the explicit calculation of a recoupling matrix leading to a zero
value. These triangular conditions may be determined not only for the terms of shells
that the operators of second quantization act upon, as is the case for the submatrix elements
T (niki, njhj, njhj, nids, AP Aket 21 (see conclusion 1), but also for the rest of the shells

and resulting terms.

In this approach both diagonal and non-diagonal matrix elements, with respect to
configurations, are considered in a uniform way, and are expressed in terms of the same
guantities. The difference is only in the values of the projections of the quasispin momenta
of separate shells.

In this paper all the expressions needed in the spin—angular parts of matrix elements of
two-particle operators calculation are presented. This approach is also applicable to one-
particle operators. While calculating the spin—angular parts of the latter, all the expressions
needed are included in the cases discussed for the two-particle operator. For instance, in
the recoupling matrix calculation two of the four cases discussed above appear, namely,
when all the second-quantization operators act upon the same shell (section 4.1) and when
they act upon two different shells of equivalent electrons (section 4.2). Thus, this approach
is applicable to any one- and two-particle operator. Practical usage shows that a series of
difficulties persisting in the traditional approach to the calculation of angular parts of matrix
elements based on the usage of coefficients of fractional parentage and unit tensors can be
avoided and high efficiency may be achieved. Indeed, preliminary calculations show that
computer programs based on our approach on average are 4—6 times faster than the other
well known codes (Gaigalagt al 1995). This methodology can easily be generalized to
cover the case of relativistic operators and relativistic wavefunctions.
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Appendix

Here algebraic expressions are presented for the two-particle operator (1) in the irreducible
tensorial form for all the distributions from table 8. Although there are quite a few
distributions, the structure of their algebraic formulae is similar, and therefore on the
basis of a graphical approach (Gaigaltsal 1985) the expressions may be written
in a compact form, where one general formula includes all the cases having the same
structure. Each particular formula is obtained from these by performing elementary graphical
transformations according to the rules explained below. The general expressions are as
follows.

(1) Distributionaeaaa (case 1 from table 8).

For this distribution the analytical expressions (7), (8) in Gaigalas and Rudzikas (1996)
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NoAy NoAa faAa NaAa NgAa

Nada NoAa Nada Nara

A1 Az A.’i

n,')\,‘ nj/\,- n,-/\; n,v\,-

'SV f 7 IS ( /
niAl nj)p nlAL nJAJ

Ag As As

niA _
K12012

DY
A

Figure Al. Diagrams for an arbitrary two-particle operator. Diagrafns A and Az represent
two-particle operators when this operator has distributione. DiagramsA, and As represent
two-particle operators for all other distributions. Diagrams A, A3, A4 andAs are similar to
the usual Feynman-Goldstone diagrams. DiagragsAy and Ag represent tensorial products
of second quantization operatorde( for the second groupAy for the third, andAg for the
fourth).

are used, in which the quantum numbers, n;l;, n}l;

17’

shella. For the first form (figure A1A;), we have
Al = Z 6:)l(nat)\ou na)"av na)\a’ na)\aa E)
K12012K1,07p

(los) (la5)7 (k12012) 5 0as) o 5 (as)](k1015)7 KK)
x[[a X a ] 12012) [a X a ] 12912 ]p,fp’ (44)

n;l; acquire particular values of a

where
- ®/(n(1)"0(7 ntx}\oz’ n()l)\'aa n()t)"()tv E)

O(ngry, B) (45)

él(not)"ou na)‘-aa n()t)\'()ta noz)"ou

o
Il

and
~ — 1 k—p+1 1/2
®l(na)‘-a7 na)‘-ou not)\ou na)‘-ou C‘) = 5(_1) rt [K12’ 012, K12’ G;|/_2] /

X (Mg halahe | g* 2720 g hyngdg)

L, 1, «1 s s o1
x1l, 1y K2 s s o02¢. (46)
K12 Kiz k 012 012 k

In an equivalent second form (figure A4, + A3), we have
AZ + AS = é)lla(na)\on not)\av na)"ou na)\aa E)
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X[[a(las) x &(las)](’(ldl) x [gl(lm x a(las')](f(zrrz)]l(f/:)l]

+©11b(not)\ou na)‘fou na)\aa not)‘av E)[a(lus) X &(IHS)];kq]i)P’ (47)
where
o) = _ L1, 1vk—p -1/2

11a(Mahe, Nohg, Nghg, Nghy, B) = i( 1) [Klv 01, K2, 02]

X (ahalahallg 77 Ingrangha) (48)
and
éllb(na)hou not)\ou noz)hav na)hou E) = (_1)k_p+l(na)‘otna)‘ot”g(Kl’(Zk’UlaZk)”not)\-ana)\-a)

K1 K2 k o1 02 k
X{la I, la}{s S s}' (49)

Both factors®;;,(nare, Nare, Natas Nates 2) AN O 1y (Mara, Nala, Natas Natq, E) have
properties analogous to those @f as stated in (45).

(2) DistributionseaB, BaBa, Byay, yBya, ayBs, yasB, Bday, SBya, adBy, Sayp,
Byad, yBda (cases 2, 3, 11, 12, 27, 29, 31, 32, 35, 36, 39, 40 from table 8) (figure Al,
Ag, AG):

Ag = O(nidi, njhj, niA;, ni;, B)As, (50)
where
C:)(I’ll')\,', l’lj)\,j, }’l/)\./ I’lj,)x

1

— 1 k— -1/2
i B) = 3(=D" Pk, 01, k2, 02) Y

X (nihinjhj || g7 i nin A (51)

Diagram Ag corresponds to tensorial products of the operators of second quantization for a
two-particle operator (for details see Gaigalas and Rudzikas (1996)).

(3) DistributionsaaBB, yyaB, vyBa, aByy, Bayy, aBys, Bady, aBdy, Bays,
ysap, SyBa, ydBa, Syap (cases 6, 15-26 from table 8) (figure Ads, A7):

As= > Ok, njhj, njAj, nix, B)Aq, (52)
K12012K1,075
where
~ — 1 k—p+1 1/2
®(ni)\'i7 n_])"ja n:)\.;, nl;)\';v :‘) = i(_l) Pt [Klzv 012, KiZa U]{Z] /

x(nihinjh || g7 i nin A

L I « s s o1
x{ L L Kz}{ s s 02}. (53)
K12 KZ/lZ k 012 O'J,.Z k

(4) DistributionsaBa, BaaB, yBay, Byya, ayéB, yapBs, BSya, 8Bay, adyB, Safy,
Byda, yBas (cases 4, 5, 13, 14, 28, 30, 33, 34, 37, 38, 41, 42 from table 8) (figure Al,
Ag, Ag):

As= > Ok, njhj, njAj, ni), B)As, (54)
K12012K1,07,

where

~ Far o rar ey 1 k—p+1+1 4+l +K2+02+Kk12+0
O;di, njkj, nid;, nih;, B) = 5(=1)"7 JraTRe TR

x[K12, 012, K59, 072 (ni i | g €710 [ A A

l; I K s s o1
X { lj, lj K2 } { N N 02 } . (55)
K12 Kiz k 012 Uiz k
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(5) Distributionsaaa, afaa (cases 7, 8 from table 8) figure Alg):

A It /At
As = }: Onidi, njhkj, njh;, N}, B)
K12012€1,01p

X[a(l;aS) x [a(lus) x [a(lns) % &(]“S)](Kizaiz)](K’K“)];]fl(_)p,

where

@(l’li)xi, njkj, I’l/)\., nj’)\

[

;-, E) = O'(niAj, njhj, niA, n}k}, 2)
= O(nghre, nghg, B).
WhenG(T) = G(Baaw), then
O(n;ri, njj, NiA;, n}k}, B) = %(—1)k7p+’(12+”1/2+1"+l” [k12, 012]
x[1a 015) 2 (phpnanall g7 Inghangia)

ly lo ki s s o0p,
X 1Kk1 k2 k o1 oo k

lﬂ la K12 s N 012

1 ly, K s s o
12) lg la K12 12

X,;&[KhKS] {"12 k Kl}{“iz k Ks}7
and whenG (T) = G(aBaw), then
é(”i)\ia njk;, n;A;, n;k}, 8) = %(—1)k_p+K12+“1,2+K12+”12[K12, o19]

1/2
x[K12, 0102 (e han g gl g “ #1720 g Aoy Ay

lo 1o K5y s s o0p,
X{Kl K2 k}{al o2 k}

lo g k12 s s 012

o

l ly, K12 s s 012

x [K,,K_]l/z{ po e “ .
,;(: ! I{iz k K] 0—2{2 k I(x

(6) DistributionsgBBa, BBap (cases 9, 10 from table 8) (figure Adp):

A5 = Z C:)(n[)»i,njkj,n;)»;,n;k;, E)
K12012€1,07p
X[[[a(lﬂs) x a(lﬂf)](/ﬂszlz) % [l(lﬂf)](Kle) x &(luS)]gfk_)m
where
O(niki, njhj, niAL, nid;, B) = O (nihi, njhj, njAj, ni), E)
= @(}’l(,,)\a, nlg)»ﬁ, E)
WhenG(T) = G(BBBw):
Omiri, njhj, mrl, n;, B) = %(—1)"7”*’%2*01,2”“”/’ (k12 015]
x[ie12, 012l Y2 (nphpnprpllg “#0) ngrgngry)
lg 1o k1, s s 01,
X k1 k2 k op o2 k
lﬁ lﬁ K12 N s 012

ly lg kK s s o]

Z 1/2 o B 12 12

XKK[KhKS] {Klz k K[ }{012 k KS }’
1By
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and whenG (T) = G(BBap):
Onir, njAj, ni\;, nj'AJ’ B) = %(—1)k’p+’(12+"1/2+‘“2+"12[/ciz, 015

x [K12, 012) Y2 (nghgnphp || g “*# 190 |y hgnghg)

ly g Kkip s s o0g,
X{Kj_ k2 k }{01 oo k }

lﬁ lﬁ K12 s S 012

’ !
DY FA Y P )
KKy

The final analytical expressions for diagratg appearing in (50), diagramy in (52) and
diagramAg in (54), are obtained after the following graphical transformations.

(i) The second quantization operators are interchanged, until (from left to right) first
come the operators acting upon shellithen correspondingly upo#, v, §.

(ii) The generalized Clebsch—Gordan coefficient is transformed to match the order of
operators. This is performed by changing the order of angular momenta coupling at some
of the nodes 1, 2, 3 (figure AUg, A7 and Ag).

We immediately write down the algebraic expressions for diagragsA; and Ag (of
figure Al) after transforms (i) and (ii) by applying usual generalized graphical technique
(see Gaigalast al 1985). Also we have to notice that is equal to® with a phase factor,
which is found by transforming the diagram of the tensorial structure according to the rules
(i) and (ii). Only in cases 1 and 7-10 (see table 8) déés= O, because there is no need
to transform the tensorial structure.

As an example, let us consider in particular the case where the opefaaots upon
the first shelln;i;, operatora; acts upon the second shahx,, and operatorszf,, a},, act
upon the third shelhksis (see equation (1)). This is distribution 18 in table 8. We obtain
the algebraic expression for distributigieyy from (52). The two-particle operator for
this distribution can be represented by diagrBirwhich is proportional to its tensorial part

(diagramBy) as (figure A2B;, B»):
Bi= Y O(nahz nir1. n3rs. nzrs. 8)B,, (64)
K12012K12015
where

= -~ _ 1 k—p+1 1/2
O (n2hz, n1h1, n3ha, n3rs, B) = 3(—D* 7 k1z, 012, k15, 01"

x (n2hanid|| g 247120 | n3hznghs)
lz 13 K1 N N o1
x! i I3 I(g}{ s s 02}. (65)
K12 K1, Kk o1 01, k
We use (i) for diagranB, (figure A2, B,) then as in expression (64) the order of second-

guantization operators ig/2a9393%%  so we change it according to (i) and obtain
(figure A2 By, B3):
By =— Z O(ngrz, n1r1, n3ha, n3hs, E)Bs. (66)
K12012K15015
We use (ii) for diagramBs then change the sign at the node 1 to finally obtain (figure A2
By, Ba):

By = Z (—Dhitlet2—az=otl@ (nyh,, nir, n3ha, n3ks, E)Ba

;o
K12012K12015
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nz/\g nl)q
kk

N33 nals

By

Ba B4

Figure A2. Diagrams for distributions29q(193(9 3039 Diagram B; represents a two-
particle operatorG. DiagramsB;, B3 and B4 represent graphical transformations. Diagram
By represents the tensorial part of the two-particle operBiobefore transformations, diagram
B3 represents this tensorial part after transformation (i), and diagdamepresents it after
transformation (ii).

Z ®'(n2r2, n1r1, n3rz, n3k3, E)Ba

K12012K1,07,
= Z ®'(n2A2, n1r1, n3h3, nghs, B)
K12012K12015
1 1 ~ (1 ~ (1 1500)7 (kk)
X[[a(ls) x a(ZS)](KIZUIZ) x [a(3S) x a(3S)](K12012)]p’_p’ (67)

where
O'(nah, n1r1, n3ks, n3ks, E) = O(nzkz, nii1, n3rs, nars, E)
= (=1)HetB 202G ()05, nydg, naks, naiz, )

1 k—p+h+i—k12—o12+1 ’ ’11/2
=3 E (—=Lyfptitlmazmoztlie o oy k), 0—12]/

K12012K1,07,
k, k
x (nghanid|| g2 7120 | n3dznghs)
lz 13 K1 N N o1
x 1 Ih g K2 s s o02¢. (68)
K12 Ki2 k 012 01/_2 k

All the graphical transformations are made and the correspondence between angular
momentum diagrams,, Bz and B4 in figure A2 and algebraic expressions is defined
according to the graphical approach of Gaigadbal (1985).

Now, using (67) and (68) we can write down the irreducible tensorial form for the
Coulomb operator with tensorial structukge = x, = k, o1 = 0, = 0, k = 0 and the
two-electron submatrix element:

(n2hn 1]l g k%09 1 nananzia) = 2[k]Y2(Lal C® |lLa) (12| CP||13) Ry (nalanalz, nalinals).

(69)
From (68) we have:

’ — 1 1+l —Kk12—012+1 / 7 11/2
Ocoulomp(2A2, N1A1, N3h3, n3h3, E) = 3 Z (—=Dhrtlemraz=o i) g5, k1, 015]Y

K12012K15075
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x 2[k]Y2 (L[| CP113) (12| C P ||13) Re (nolonsls, nilinsls)
lz lg k N N 0

x3 I I3 k s s 0
K12 Kiz 0 012 01’2 0

= — 3 ) (=17 ey, 0192 (1| CP|lla) (11| CP 1)

K12012

I 1 k
X Ry (nalonslz, nilinals) {lz li Klz} . (70)

From (67), by (70), we finally obtain the following expression, in second-quantized
form, for the Coulomb operator for the cage=1, 8 =2 andy = 3:

Bicouomb = —3 (=12 (15| CP|113) (12| C P |113) Re(nalonsls, nalinsls)

I 1 k
_1\0 1/2 ) b2 3
X Z ( 1) 12[KlZs 012] { 13 ll }

K
K12012 12

X[[a(?»l) x a()LZ)](KH(TlZ) x [&()\3) x &0\3)]('612012)](00). (71)

This kind of operator needs to be calculated when we are considering, for example, the
matrix element

(33PL1S101L285202LS|| Houtombl| 3S3d3BL, S5 Q) LS5 QL) »81,L5S5 Q5L S').
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