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INTERACTION AND CHAOTIC DYNAMICS OF THE CLASSICAL 
HYDROGEN ATOM IN AN ELECTROMAGNETIC FIELD* 
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Expressions for energy and angular momentum changes of the hydrogen 
atom due to interaction with the electromagnetic field during the period of 
the electron motion in the Coulomb field are derived. It is shown that only 
the energy change for the motion between two subsequent passings of the 
pericentre is related to the quasiclassical dipole matrix element for transitions 
between excited states. 

1. Introduction 

A classical hydrogen atom in a monochromatic 
electromagnetic field is one of the simplest real 
nonlinear systems whose dynamics may be regular 
or chaotic [1,2], depending on the relative field 
strength and frequency. Even a one-dimensional 
classical model of a highly excited atom yields 
results sufficiently close to the experimental 
findings. For theoretical analysis approximate 
mapping equations of motion, rather than 
differential equations, are most convenient [2-7]. 
Here a two-dimensional map (for the scaled energy 
and for relative phase of the field) is generalized 
for the two-dimensional hydrogen atom, i. e. we 
calculate energy and angular momentum changes 
of the atom interacting with the electromagnetic 
field. 

2. One-dimensional atom in monochromatic field 

The Hamiltonian of the hydrogen atom in a 
linearly polarized monochromatic electromagnetic 
field (in atomic units) is [4,7] 

(1) 

Here P is the generalized momentum, c is the 
light velocity, 
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(2) 

is the vector potential of the field, and 
are the field strength amplitude, field frequency, 

and phase, respectively. The change of the electron 
energy can be obtained from the Hamiltonian 
equations of motion [8] 

(3) 

One can introduce the scaled energy   

and the scaled field strength   

However, it is convenient [2-7] to 

introduce the positive scaled energy and 

the relative field strength with  

being the initial scaled energy. 
Integration of Eq. (3) over the period of time 

between two subsequent passages of the electron 
at the apocentre results in the change of the 
electron energy [3,4] 

(4) 

where 

(5) 

Here is the relative 
frequency of the field, i. e. the ratio of the field 
frequency to the electron Kepler orbital frequency 
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Fig. 1. Trajectories for the map (4) and (6) with the 
parameter and initial conditions  

and is the derivative of the Anger function. 

Introducing a generating function [9, 
10] one can calculate the phase change over 
the period 

(6) 

where 

(7) 

Equations (4) and (6) describe the changes of 
the energy and phase in time. This map greatly 
facilitates numerical investigation of dynamics and 
ionization processes. In Figs. 1 and 2 results of 
the numerical analysis of the map (4) and (6) 
are presented. 

3. Two-dimensional atom in monochromatic field 

For calculation of the energy change of the 
arbitrarily oriented two-dimensional atom in the 
electromagnetic field according to Eq. (3), one 
should perform the transformation of the coordi
nates (Fig. 3). The change of the angular 
momentum of the atom follows from the 
Hamiltonian equations of motion 

(8) 

By analogy with the scaled energy one can 
introduce the scaled angular momentum  

Moreover, it is convenient to 
introduce the parametric equations of motion for 

Fig. 2. The ionization threshold field dependence on the relative 
frequency Continuous curve represents results calculated with 
variation of the initial phase while dotted curve is for 

the Coulomb potential [6-8]. 
Integration of Eqs. (3) and (8) for half of 

the period of the electron motion, i. e. for 
transition from apocentre to pericentre, yield the 
scaled energy and angular momentum changes in 
the linearly polarized electromagnetic field 

Fig. 3. Two-dimensional atom in the electromagnetic field. 
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and 

(10) 

(9) 

Here is the Weber function, and 
e is the eccentricity of the ellipsis. By analogy or 
from Eqs. (9) and (10) choosing appropriate initial 
phases of the field one can calculate the energy 
and angular momentum changes for the electron 
motion from pericentre to apocentre as well as 

for the complete period with different initial 
conditions. 

So, for motion between two subsequent 
passages at the apocentre we have generalization 
of Eq. (4) for the energy change 

and the angular momentum change 

One can calculate the energy and angular momentum changes for the electron motion between two 
subsequent passages at the pericentre in a similar way. 

3.1. Approximation for relatively high frequency s 

For relatively high frequency of the field the asymptotic form of the Anger function  
and its derivative may be used [7]. Then Eq. (11) may be written in the form 

Introducing the generating function we can obtain the iterative equation for the phase as a 
generalization of Eq. (6) 

(13) 

(12) 

(11) 
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Fig. 4. Phase plane of the two-dimensional map (13) and (14) with parameter initial conditions  
and orientation angle (a) and (b)  

(14) 

Using mapping Eqs. (13) and (14) we can 
represent the energy and phase dynamics (Fig. 4) 
and calculate numerically the relative threshold 
field strength for the ionization of the two-dimen
sional hydrogen atom (Fig. 5). 

3.2. Limiting cases for energy and angular 
momentum changes 

3.2.1. Approximations for very extended orbits 

For very extended orbits, the expansions 
for the energy (11) and angular momentum (12) 
in powers of are 

Fig. 5. The ionization threshold field dependence on the relative 
frequency for a two-dimensional atom with the eccentricity 

and orientation angle (curve 1) and 
(curve 2). 

For Eq. (15) coincides with Eq. (4) for 

the one-dimensional atom, while Eq. (16) repre

sents change of the angular momentum resulting 

in the transition to the elliptic states with nonzero 

angular momentum. 

3.2.2. Approximations for almost circular orbits 

For almost circular orbits the eccentricity is 
small, Expansion of expressions (11) and 

(12) in powers of e may be obtained from Eqs. 
(3) and (11). The results are 

(15) 

(16) 
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(17) 

(18) 

(19) 

These expansions are not valid for s = 1,2,3,... . 

4. Atom in the circularly polarized field 

The equation for the energy change of the 
atom in the circularly polarized field is 

Here sign '+ ' or '-' corresponds to the same 
and opposite directions of the electron and field 
rotations, respectively. 

For the electron moving between two subse
quent pericentres the energy and angular momen
tum changes are 

electron between two subsequent apocentres, i. e. 
the points most distant from the nucleus, where 
the electron's energy change is minimal, the energy 
change is described by the expression similar to 
Eq. (20) but instead of and we 

have the Anger function and its derivative of the 
positive order, and This interval has 
been used in Refs. [3-5] for derivation of the 
Kepler map for the one-dimensional hydrogen 
atom. 

5. Conclusion 

Analytical expressions for the energy and 
angular momentum changes of the two-dimensional 
hydrogen atom in linearly and circularly polarized 
electromagnetic fields are derived. It should be 
noted that in general the expressions are rather 

It should be noted that expression in the curly 
brackets in Eq. (20) coincides with the expression 
of the quasiclassical radial dipole matrix element 
in the velocity representation [6] 

(22) 

This correspondence, however, takes place only 
for interaction of the hydrogen atom with the 
circularly polarized microwave field and for 
integration of the equations of motion between 
two subsequent pericentres. In general, the energy 
[3,7] and angular momentum changes depend on 
the integration interval. So, for motion of the 

(20) 

(21) 



complicated. The approximate expressions for 
limiting cases of the parameters are more 
convenient for analytical and numerical analysis of 
the dynamics. 

The derived expressions are suitable for the 
three-dimensional hydrogen atom as well and may 
be generalized for analysis of the chaotic motion 
(due to the Jupiter perturbations) of comets and 
asteroids in the Sun system. 
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