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INTERACTION AND CHAOTIC DYNAMICS OF THE CLASSCAL

HYDROGEN ATOM

IN AN ELECTROMAGNETIC FIELD*

M. Alaburda, V. Gontis, and B. Kaulakys

Ingtitute of Theoretical Physics and Astronomy,
A. Gostauto 12, 2600 Vilnius, Lithuania

Expressions for energy and angular momentum changes of the hydrogen
atom due to interaction with the electromagnetic field during the period of
the electron motion in the Coulomb field are derived. It is shown that only
the energy change for the motion between two subsequent passings of the
pericentre is related to the quasiclassical dipole matrix element for transitions

between excited states.

1. Introduction

A classical hydrogen atom in a monochromatic
electromagnetic field is one of the simplest real
nonlinear systems whose dynamics may be regular
or chaotic [1,2], depending on the relative fied
strength and frequency. Even a one-dimensional
classical model of a highly excited atom yields

results sufficiently close to the experimental
findings. For theoretical analysis approximate
mapping equations of motion, rather than

differential equations, are most convenient [2-7].
Here a two-dimensional map (for the scaled energy
and for relative phase of the field) is generalized
for the two-dimensional hydrogen atom, i.e. we
calculate energy and angular momentum changes
of the atom interacting with the electromagnetic
field.

2. One-dimensional atom in monochromatic field

The Hamiltonian of the hydrogen atom in a
linearly polarized monochromatic electromagnetic
field (in atomic units) is [4,7]

#- b lad

Here P is the generalized momentum, c is the
light velocity,
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cF . .
A = — - sin(wr + ) 3]

is the vector potential of the fied, F, w, and
{# are the field strength amplitude, fieddld frequency,
and phase, respectively. The change of the electron
energy can be obtained from the Hamiltonian
equations of motion [§]

E = —iFcos(ot +9). ©)
One can introduce

=E/w®® and the
=F/w4/3. However, it

the scaled energy E;
scaled field strength F;

is convenient [2-7] to
introduce the positive scaled energy & = —2E; and

the relative fidd strength Fy=F,/€2, with &,
being the initial scaled energy.

Integration of Eq. (3) over the period of time
between two subsequent passages of the electron
at the apocentre results in the change of the
electron energy [3,4]

2 .
8j+1 = sj_nFOS(ﬁ(ej—i—l)Sln{}j’ (4)
where
4
h(Ejv1) = E}:J;M(Sjﬂ)- )

Here s=8"3/2=w/(—2E)3/2 is the relative
freqguency of the field, i. e. the ratio of the fidd
frequency to the electron Kepler orbital frequency



Fig. 1. Traectories (€,%) for the map (4) and (6) with the
parameter  nF,E3=00035 and iniid conditons 3, =,
£9=03-0003% (i=0,1,2,...)

and Ji(s) is the derivative of the Anger function.
Introducing a generating function G(€j11,7;) [9,

10] one can caculate the phase ¢ change over
the period

-3/2 2

J j
where
dh(€;11)
NEjsr) = o 7)
d81'+1

Equations (4) and (6) describe the changes of
the energy and phase in time. This map greatly
fecilitates numerical investigation of dynamics and
ionization processes. In Figs. 1 and 2 results of
the numericd andyss of the map (4) and (6)
are presented.

3. Two-dimensona atom in monochromatic fidd

For caculation of the energy change of the
arbitrarily oriented two-dimensonal atom in the
electromagnetic fidd according to Eq. (3), one
should perform the transformation of the coordi-
nates (Fig. 3). The change of the angular
momentum of the atom folows from the
Hamiltonian equations of motion

dH

M = — 3 = ~rFsin(a + p)cos(wt + 9). (8)

By andogy with the scaled energy one can
introduce the scaled angular  momentum  u

=2Ms=2Mw”3. Moreover, it is convenient to
introduce the parametric eguations of motion for
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Fig. 2. The ionization threshold fidd dependence on the rdative
frequency s, Continuous curve represents results cdculated with
veriagtion of the initid phase 3, while dotted curve is for

= 0.

the Coulomb potential [6-8].

Integration of Egs. (3) and (8) for hdf of
the period of the electron motion, i.e for
transition from apocentre to pericentre, yidd the
scaed energy and angular momentum changes in
the linearly polarized electromagnetic fied

2
2nFy€y
Eiyy = E+—X

T &

Fig. 3. Two-dimensond aom in the eectromagnetic fidd.
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X {— [J ;(z)sim‘)j + E;(z)cosz?}-:I cosyp + 1 e_ ¢ [(J @) — M) cosﬂj - (Es(z) - w) sim?{l sinp} 9

ST ST
and
27‘F08(2) Vli-e sin(sn)) . 1 — cos
Biy1 = @+ Ean { p (Js(z) - —l—sgr—z) sind; + (Es(z) - ___;r_@fl) cosd; | cosp
+ [(-—J;(z) +(1+e) S—X%m) cosd); + (E;(z) +(1+e) 29%852 + %) sinaj] sinp} : (10)

Here E((z) is the Weber function, z =es and
e is the eccentricity of the dlipss. By andogy or
from Egs. (9) and (10) choosing appropriate initial
phases of the fidd one can cdculate the energy
and angular momentum changes for the electron
motion from pericentre to apocentre as wdl as

for the complete period with different initia
conditions.

So, for motion between two subsequent
passages at the apocentre we have generalization

of Eq. (4) for the energy change

2
4nF, € V1 = &2 i
gy = &+ s o0 {—-J_;(z) sindjcosp + 1 p ¢ I:Js(z) —%l] cosﬁjsinp} (11)
j+1
and the angular momentum change
2 g3
AnFo€p (V1 —e sin(sm) | . , sin{sz .
Biy1 = Ht £t { p J.@) —Jm—l sind;cosp + | —J(z) + (1 +e)—nLl cosdjsing ¢ . (12)

One can calculate the energy and angular momentum changes for the electron motion between two
subsequent passages at the pericentre in a smilar way.

3.1. Approximation for relatively high frequency s

For reatively high frequency of the fidd s> 1, the asymptotic foom of the Anger function J(se)
and its derivative Jy(se) may be used [7]. Then Eq. (11) may be written in the form

=372 | A
2 4a sin(€;.11°x) 2 . 1—e -1
€1 = & +aF€, ((e - 2) li% - —S—SJ-H - —Jn———-ejﬂ sind;cosp + p 4a€; 1
=302 =32
2sin(€; ) 4 2b 3 _3p da _-1p SINELTTM) .
- = £J-f‘1 ~35 jfl +(€e-1) 4b8j+1/2 - j+1/2 - ———*]Lt———sjfl cosﬂjsmp . (13

Introducing the generating function we can obtain the iterative equation for the phase 17}- as a

generalization of Eq. (6)

~312 . =312
- - 3cos(E; 1 m)  _ 28in(€; .7 -
‘ﬂj-ﬂ = Oj + 27[8j+31/2 + nFOE% {(2 —e) {%"_ - —(2JL) 8j+11/2 + ——(n-’L) 8]-“] costcosp + ¢ x

sin(€ -+31/2n)
T J+1

3571

x |2a€7 % - 3cos(e7'me + — L — &7 + B2 4+ (e-1) [sbejzf{z ~ 208777

j+1
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Fig. 4. Phase plane (€,9) of the two-dimensond map (13) and (14) with parameter mFoEZ = 0.0035, initid conditions 8, = x,
£3=03-0003 (i=0,1,2,...) and orientation angle (@) ¢ =0 and (b) ¢ =a/6.

-32 =32
3cos(€;1m) o sin(E;m) _gp) | 8si
- 3 &t o €1 | |sim sing ;.

(14)

Usng mapping Egs. (13) and (14) we can

represent the energy and phase dynamics (Fig. 4)

and caculate numerically the relative threshold

fidd strength for the ionization of the two-dimen-
sond hydrogen atom (Fig. 5).

3.2. Limiting cases for energy and angular
momentum changes

3.2.1. Approximations for very extended orbits

For very extended orbits, e - 1, the expansions
for the energy (11) and angular momentum (12)
in powes of B=V1-¢°«1 ae

0,015 |

Fig. 5. The ionization threshold fidd dependence on the reative
frequency s, for a two-dimensond aom with the eccentricity
e=09 and orientation angle ¢ =0 (cuve 1) and ¢ =x/6
(curve 2).

4nF €5 . i
8j+1 = Sj + ?ﬂ— {-—(1 + ﬁZ)Js(s) SmﬂjCOS(p +p l:Js(s) - il%(;_nljl cosﬂjSingp} , (15)
4mFoE) sin(sm) | . 2 o 2, sin(s) )
Kl = K+ —— BJs(s) — = |sindjcosp + | —(1 + B)(0) + 2 - ) —; cosﬁjsm(p} : (16)
j+1

For e=1 Eqg. (15) coincides with Eq. (4) for
the one-dimensional atom, while Eqg. (16) repre-
sents change of the angular momentum resulting
in the transition to the dliptic states with nonzero
angular momentum.

3.2.2. Approximations for almost circular orbits

For amost circular orbits the eccentricity is
smal, e-»0. Expanson of expressons (11) and
(12) in powers of e may be obtained from Egs.
(3) and (11). The results are
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e 4F08051n(sn) e 3¢9 5‘—’5 3¢5 | . 3
. = £, = sind:cosyp
j+1 it z 4 2 9_g2 J
1—-—e (s —4 e 1e252
+5 - + costsing | » (17)
1- 52 4 — s2 9 — sz !

2 12 12 122

4F08(2)sin(szr)l e+1—e(1+;s) e(1-35%) 3%
2ot e
2

finl = M - sintt,cosp
A €41 1- s 4-s2  o9-g#|
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These expansons are not vaid for s=1,2,3,...
4. Atom in the circularly polarized fidd

The equation for the energy change of the
atom in the circularly polarized fidd is

Ek = —eF [vxcos(wt +9) £ v sin(wr + z?)il . (19

4.7[F080
(o

& = & -
! gy

Bisl = H+
! S - €

L+ 1/e)°055~;”) +1- Ve cos(sz + 9 F ‘P)} :

It should be noted that expresson in the curly
brackets in Eg. (20) coincides with the expression
of the quadclassicd radia dipole matrix eement
in the veocity representation [6]

T2 -2

+ 1.
D, = ;{J_S(Z)i

(22)

This correspondence, however, takes place only

for interaction of the hydrogen atom with the
circulaly polarized microwave fidd and for
integration of the equations of motion between
two subsequent pericentres. In general, the energy
[3,7] and angular momentum changes depend on
the integration interval. So, for motion of the

Here dgn '+' or '-' corresponds to the same
and opposite directions of the eectron and fidd
rotations, respectively.

For the electron moving between two subse-
quent pericentres the energy and angular momen-
tum changes are

[ _s@) - M] } sins + 9, F ¢), (20)

2 :
AnFoq {[V 1—e ( L@ - M) I (_J'_S(z) + (e~ 1)%‘31)]5111@:: +9 F p) (21)

electron between two subsequent apocentres, i. e
the points mos distant from the nucleus, where
the electron's energy change is minimal, the energy
change is described by the expresson smilar to
Eg. (20) but instead of J_(es) and J_(es) we
have the Anger function and its derivative of the
positive order, Jg(es) and J(es). This interva has
been used in Refs. [3-5] for derivation of the

Kepler map for the onedimensiona hydrogen
atom.

5. Concluson

Analyticd expressons for the energy and
angular momentum changes of the two-dimensiona
hydrogen atom in linearly and circularly polarized
electromagnetic fidlds are derived. It should be
noted that in general the expressons are rather



complicated. The approximate expressons for
limiting cases of the parameters ae more
convenient for analytica and numerica analyss of
the dynamics.

The derived expressions are suitable for the
three-dimensional hydrogen atom as wdl and may
be generdlized for anadlysis of the chaotic motion
(due to the Jupiter perturbations) of comets and
asteroids in the Sun system.
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