[PDF]
http://dx.doi.org/10.3952/lithjphys.48102
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 73–78 (2008)
A ROLE OF PHONON-ASSISTED
TUNNELLING IN ELECTRICAL CONDUCTIVITY OF CARBON NANOTUBE
NETWORKS*
P. Pipinys and A. Kiveris
Department of Physics, Vilnius Pedagogical University, Studentų
39, LT-08106 Vilnius, Lithuania
E-mail: akiveris@vpu.lt
Received 13 June 2007; revised 28
November 2007; accepted 22 February 2008
High-field transport properties of
single-wall carbon nanotubes (SWCNT) are analysed on the basis of
phonon-assisted tunnelling (PhAT) model. This model enables one to
explain not only the temperature-dependent current–voltage
characteristics of SWCNT, but also the crossover from a
semiconducting-like temperature dependence conductivity to a
metallic-like one as temperature is increased.
Keywords: carbon nanotubes, electrical
conduction, phonon-assisted tunnelling
PACS: 73.40.Gk, 73.63.-b, 73.50.Fq, 73.50.-h
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
TUNELINIŲ ŠUOLIŲ, STIMULIUOTŲ
GARDELĖS FONONAIS, VAIDMUO ANGLIES NANOVAMZDELIŲ TINKLO
ELEKTRINIAME LAIDUME
P. Pipinys, A. Kiveris
Vilniaus pedagoginis universitetas, Vilnius, Lietuva
Pateikiamas įvairių autorių tirtų anglies
nanovamzdelių laidumo rezultatų, gautų matuojant laidumo
priklausomybes nuo temperatūros ir elektrinio lauko stiprio,
palyginimas su teorinėmis krūvininkų tunelinių šuolių, dalyvaujant
fononams, tikimybių priklausomybėmis nuo temperatūros ir
elektrinio lauko stiprio.
Eksperimento ir teorinių skaičiavimo rezultatų palyginimas leidžia
teigti, kad laidumo priklausomybes nuo lauko ir temperatūros
nagrinėjamuose dariniuose lemia laisvųjų krūvininkų tunelinė
generacija, kurios spartai didelę įtaką turi gardelės vibroninė
energija – fononai.
Pateiktasis modelis taip pat paaiškina, kodėl esant aukštesnei
temperatūrai stebimas anglies nanovamzdelių elektrinio laidumo
virsmas iš puslaidininkinio į metalinį, t. y. neigiamas savitosios
varžos temperatūrinis koeficientas virsta teigiamu. Tai įvyksta
dėl to, kad pakankamai stipriame lauke ir esant aukštesnei
temperatūrai tunelinį procesą lydi fononų emisija.
References / Nuorodos
[1] S. Iijima, Helical microtubules of graphits carbon, Nature 354,
56–58 (1991),
http://dx.doi.org/10.1038/354056a0
[2] A.B. Kaiser, G. Düsberg, and S. Roth, Heterogeneous model for
conduction in carbon nanotubes, Phys. Rev. B 57, 1418–1421
(1998),
http://dx.doi.org/10.1103/PhysRevB.57.1418
[3] G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G.
Düsberg, and S. Roth, Magnetoresistance of an entangled single-wall
carbon-nanotube network, Phys. Rev. B 58, 16064–16069
(1998),
http://dx.doi.org/10.1103/PhysRevB.58.16064
[4] Y. Yosida and I. Oguro, Variable range hopping conduction in
bulk samples composed of single-walled carbon nanotubes, J. Appl.
Phys. 86, 999–1003 (1999),
http://dx.doi.org/10.1063/1.370838
[5] W.Y. Jang, N.N. Kulkarni, C.K. Shih, and Z. Yao, Electrical
characterization of individual carbon nanotubes grown in nanoporous
anodic alumina templates, Appl. Phys. Lett. 84, 1177–1179
(2004),
http://dx.doi.org/10.1063/1.1646752
[6] N.E. Mora-Huertas, P. Murugaraj, and D.E. Mainwaring,
Temperature-dependent transport properties in the semiconducting
regime of nanoparticle carbon–polyimide composite films, Physica E 24,
119–123 (2004),
http://dx.doi.org/10.1016/j.physe.2004.04.011
[7] G. Baumgartner, M. Carrard, L. Zuppiroli, W. Bacsa, W.A. de
Heer, and L. Forró, Hall effect and magnetoresistance of carbon
nanotube films, Phys. Rev. B 55, 6704–6707 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.6704
[8] M. Baxendale, V.Z. Mordkovich, and S. Yoshimura,
Magnetotransport in bundles of intercalated carbon nanotubes, Phys.
Rev. B 56, 2161–2165 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.2161
[9] M.S. Fuhrer, M.L. Cohen, A. Zettl, and V. Crespi, Localization
in single-walled carbon nanotubes, Solid State Commun. 109,
105–109 (1999),
http://dx.doi.org/10.1016/S0038-1098(98)00520-1
[10] Ch.-K. Lee, J. Cho, J. Ihm, and K.-H. Ahn, Ballistic
corrections to weak-localization conductance of carbon nanotubes,
Phys. Rev. B 69, 205403-1–5 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.205403
[11] M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L.
Balents, and P.L. McEuen, Luttinger-liquid behaviour in carbon
nanotubes, Nature 397, 598–601 (1999),
http://dx.doi.org/10.1038/17569
[12] D.J. Bae, K.S. Kim, Y.S. Park, E.K. Suh, K.H. An, J.-M. Moon,
S.Ch. Lim, S.H. Park, Y.H. Jeong, and Y.H. Lee, Transport phenomena
in an anisotropically aligned single-wall carbon nanotube film,
Phys. Rev. B 64, 233401-1–4 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.233401
[13] J.W. Park, J. Kim, and K.-H. Yoo, Electrical transport through
crossed carbon nanotube junction, J. Appl. Phys. 93,
4191–4193 (2003),
http://dx.doi.org/10.1063/1.1554751
[14] Th. Hunger, B. Lengeler, and J. Appenzeller, Transport in ropes
of carbon nanotubes: Contact barriers and Luttinger liquid theory,
Phys. Rev. B 69, 195406-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.195406
[15] V. Skakálová, A.B. Kaiser, Y.-S. Woo, and S. Roth, Electronic
transport in carbon nanotubes: From individual nanotubes to thin and
thick networks, Phys. Rev. B 74, 085403-1–10 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.085403
[16] Z. Yao, Ch.L. Kane, and C. Dekker, High-field electrical
transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84,
2941–2944 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.2941
[17] J. Vavro, M.C. Liaguno, B.C. Satishkumar, D.E. Luzzi, and J.E.
Fischer, Electrical and thermal properties of C60-filled single-wall
carbon nanotubes, Appl. Phys. Lett. 80, 1450–1452 (2002),
http://dx.doi.org/10.1063/1.1452788
[18] P. Pipinys and A. Kiveris, Analysis of temperature-dependent
conductivity of nanotubular polyaniline on the basis of
phonon-assisted tunneling theory, Physica B 355, 352–356
(2005),
http://dx.doi.org/10.1016/j.physb.2004.11.031
[19] A. Kiveris and P. Pipinys, Nonlinear I–V
characteristics in polyaniline due to phonon-assisted tunneling,
Lithuanian J. Phys. 45, 133–137 (2005),
http://dx.doi.org/10.3952/lithjphys.45209
[20] P. Pipinys and A. Kiveris, Phonon-assisted tunnelling as a
process determining current dependence on field and temperature in
MEH-PPV diodes, J. Phys. Cond. Matter 17, 4147–4155 (2005),
http://dx.doi.org/10.1088/0953-8984/17/26/013
[21] A. Kiveris, Š. Kudžmauskas, and P. Pipinys, Release of
electrons from traps by an electric field with phonon participation,
Phys. Status Solidi A 37, 321–327 (1976),
http://dx.doi.org/10.1002/pssa.2210370140
[22] S. Moriyama, K. Toratani, D. Tsuya, M. Suzuki, Y. Aoyagi, and
K. Ishibashi, Electrical transport in semiconducting carbon
nanotubes, Physica E 24, 46–49 (2004),
http://dx.doi.org/10.1016/j.physe.2004.04.022
[23] S.W. Lee, D.S. Lee, H.Y. Yu, E.E.B. Campbell, and Y.W. Park,
Production of individual suspended single-walled carbon nanotubes
using the ac electrophoresis technique, Appl. Phys. A 78,
283–286 (2004),
http://dx.doi.org/10.1007/s00339-003-2363-6
[24] V.N. Popov, L. Henrard, and P. Lambin, Electron–phonon and
electron–photon interactions and resonant Raman scattering from the
radial-breathing mode of single-walled carbon nanotubes, Phys. Rev.
B 72, 035436-1–10 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.035436
[25] S. Rols, Z. Benes, E. Anglaret, J.L. Sauvajol, P. Papanek, J.E.
Fischer, G. Coddens, H. Schober, and A.J. Dianoux, Phonon density of
states of single-wall carbon nanotubes, Phys. Rev. Lett. 85,
5222–5225 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.5222
[26] R. Gaál, J.-P. Salvetat, and L. Forró, Pressure dependence of
the resistivity of single-wall carbon nanotube ropes, Phys. Rev. B 61,
7320–7323 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.7320
[27] S.A. Rogers and A.B. Kaiser, Thermopower and resistivity of
carbon nanotube networks and organic conducting polymers, Current
Appl. Phys. 4, 407–410 (2004),
http://dx.doi.org/10.1016/j.cap.2003.11.060