[PDF]    http://dx.doi.org/10.3952/lithjphys.48102

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 73–78 (2008)


A ROLE OF PHONON-ASSISTED TUNNELLING IN ELECTRICAL CONDUCTIVITY OF CARBON NANOTUBE NETWORKS*
P. Pipinys and A. Kiveris
Department of Physics, Vilnius Pedagogical University, Studentų 39, LT-08106 Vilnius, Lithuania
E-mail: akiveris@vpu.lt

Received 13 June 2007; revised 28 November 2007; accepted 22 February 2008

High-field transport properties of single-wall carbon nanotubes (SWCNT) are analysed on the basis of phonon-assisted tunnelling (PhAT) model. This model enables one to explain not only the temperature-dependent current–voltage characteristics of SWCNT, but also the crossover from a semiconducting-like temperature dependence conductivity to a metallic-like one as temperature is increased.
Keywords: carbon nanotubes, electrical conduction, phonon-assisted tunnelling
PACS: 73.40.Gk, 73.63.-b, 73.50.Fq, 73.50.-h
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


TUNELINIŲ ŠUOLIŲ, STIMULIUOTŲ GARDELĖS FONONAIS, VAIDMUO ANGLIES NANOVAMZDELIŲ TINKLO ELEKTRINIAME LAIDUME
P. Pipinys, A. Kiveris
Vilniaus pedagoginis universitetas, Vilnius, Lietuva

Pateikiamas įvairių autorių tirtų anglies nanovamzdelių laidumo rezultatų, gautų matuojant laidumo priklausomybes nuo temperatūros ir elektrinio lauko stiprio, palyginimas su teorinėmis krūvininkų tunelinių šuolių, dalyvaujant fononams, tikimybių priklausomybėmis nuo temperatūros ir elektrinio lauko stiprio.
Eksperimento ir teorinių skaičiavimo rezultatų palyginimas leidžia teigti, kad laidumo priklausomybes nuo lauko ir temperatūros nagrinėjamuose dariniuose lemia laisvųjų krūvininkų tunelinė generacija, kurios spartai didelę įtaką turi gardelės vibroninė energija – fononai.
Pateiktasis modelis taip pat paaiškina, kodėl esant aukštesnei temperatūrai stebimas anglies nanovamzdelių elektrinio laidumo virsmas iš puslaidininkinio į metalinį, t. y. neigiamas savitosios varžos temperatūrinis koeficientas virsta teigiamu. Tai įvyksta dėl to, kad pakankamai stipriame lauke ir esant aukštesnei temperatūrai tunelinį procesą lydi fononų emisija.


References / Nuorodos


[1] S. Iijima, Helical microtubules of graphits carbon, Nature 354, 56–58 (1991),
http://dx.doi.org/10.1038/354056a0
[2] A.B. Kaiser, G. Düsberg, and S. Roth, Heterogeneous model for conduction in carbon nanotubes, Phys. Rev. B 57, 1418–1421 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.1418
[3] G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Düsberg, and S. Roth, Magnetoresistance of an entangled single-wall carbon-nanotube network, Phys. Rev. B 58, 16064–16069 (1998),
http://dx.doi.org/10.1103/PhysRevB.58.16064
[4] Y. Yosida and I. Oguro, Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes, J. Appl. Phys. 86, 999–1003 (1999),
http://dx.doi.org/10.1063/1.370838
[5] W.Y. Jang, N.N. Kulkarni, C.K. Shih, and Z. Yao, Electrical characterization of individual carbon nanotubes grown in nanoporous anodic alumina templates, Appl. Phys. Lett. 84, 1177–1179 (2004),
http://dx.doi.org/10.1063/1.1646752
[6] N.E. Mora-Huertas, P. Murugaraj, and D.E. Mainwaring, Temperature-dependent transport properties in the semiconducting regime of nanoparticle carbon–polyimide composite films, Physica E 24, 119–123 (2004),
http://dx.doi.org/10.1016/j.physe.2004.04.011
[7] G. Baumgartner, M. Carrard, L. Zuppiroli, W. Bacsa, W.A. de Heer, and L. Forró, Hall effect and magnetoresistance of carbon nanotube films, Phys. Rev. B 55, 6704–6707 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.6704
[8] M. Baxendale, V.Z. Mordkovich, and S. Yoshimura, Magnetotransport in bundles of intercalated carbon nanotubes, Phys. Rev. B 56, 2161–2165 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.2161
[9] M.S. Fuhrer, M.L. Cohen, A. Zettl, and V. Crespi, Localization in single-walled carbon nanotubes, Solid State Commun. 109, 105–109 (1999),
http://dx.doi.org/10.1016/S0038-1098(98)00520-1
[10] Ch.-K. Lee, J. Cho, J. Ihm, and K.-H. Ahn, Ballistic corrections to weak-localization conductance of carbon nanotubes, Phys. Rev. B 69, 205403-1–5 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.205403
[11] M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, and P.L. McEuen, Luttinger-liquid behaviour in carbon nanotubes, Nature 397, 598–601 (1999),
http://dx.doi.org/10.1038/17569
[12] D.J. Bae, K.S. Kim, Y.S. Park, E.K. Suh, K.H. An, J.-M. Moon, S.Ch. Lim, S.H. Park, Y.H. Jeong, and Y.H. Lee, Transport phenomena in an anisotropically aligned single-wall carbon nanotube film, Phys. Rev. B 64, 233401-1–4 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.233401
[13] J.W. Park, J. Kim, and K.-H. Yoo, Electrical transport through crossed carbon nanotube junction, J. Appl. Phys. 93, 4191–4193 (2003),
http://dx.doi.org/10.1063/1.1554751
[14] Th. Hunger, B. Lengeler, and J. Appenzeller, Transport in ropes of carbon nanotubes: Contact barriers and Luttinger liquid theory, Phys. Rev. B 69, 195406-1–4 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.195406
[15] V. Skakálová, A.B. Kaiser, Y.-S. Woo, and S. Roth, Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks, Phys. Rev. B 74, 085403-1–10 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.085403
[16] Z. Yao, Ch.L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 2941–2944 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.2941
[17] J. Vavro, M.C. Liaguno, B.C. Satishkumar, D.E. Luzzi, and J.E. Fischer, Electrical and thermal properties of C60-filled single-wall carbon nanotubes, Appl. Phys. Lett. 80, 1450–1452 (2002),
http://dx.doi.org/10.1063/1.1452788
[18] P. Pipinys and A. Kiveris, Analysis of temperature-dependent conductivity of nanotubular polyaniline on the basis of phonon-assisted tunneling theory, Physica B 355, 352–356 (2005),
http://dx.doi.org/10.1016/j.physb.2004.11.031
[19] A. Kiveris and P. Pipinys, Nonlinear IV characteristics in polyaniline due to phonon-assisted tunneling, Lithuanian J. Phys. 45, 133–137 (2005),
http://dx.doi.org/10.3952/lithjphys.45209
[20] P. Pipinys and A. Kiveris, Phonon-assisted tunnelling as a process determining current dependence on field and temperature in MEH-PPV diodes, J. Phys. Cond. Matter 17, 4147–4155 (2005),
http://dx.doi.org/10.1088/0953-8984/17/26/013
[21] A. Kiveris, Š. Kudžmauskas, and P. Pipinys, Release of electrons from traps by an electric field with phonon participation, Phys. Status Solidi A 37, 321–327 (1976),
http://dx.doi.org/10.1002/pssa.2210370140
[22] S. Moriyama, K. Toratani, D. Tsuya, M. Suzuki, Y. Aoyagi, and K. Ishibashi, Electrical transport in semiconducting carbon nanotubes, Physica E 24, 46–49 (2004),
http://dx.doi.org/10.1016/j.physe.2004.04.022
[23] S.W. Lee, D.S. Lee, H.Y. Yu, E.E.B. Campbell, and Y.W. Park, Production of individual suspended single-walled carbon nanotubes using the ac electrophoresis technique, Appl. Phys. A 78, 283–286 (2004),
http://dx.doi.org/10.1007/s00339-003-2363-6
[24] V.N. Popov, L. Henrard, and P. Lambin, Electron–phonon and electron–photon interactions and resonant Raman scattering from the radial-breathing mode of single-walled carbon nanotubes, Phys. Rev. B 72, 035436-1–10 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.035436
[25] S. Rols, Z. Benes, E. Anglaret, J.L. Sauvajol, P. Papanek, J.E. Fischer, G. Coddens, H. Schober, and A.J. Dianoux, Phonon density of states of single-wall carbon nanotubes, Phys. Rev. Lett. 85, 5222–5225 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.5222
[26] R. Gaál, J.-P. Salvetat, and L. Forró, Pressure dependence of the resistivity of single-wall carbon nanotube ropes, Phys. Rev. B 61, 7320–7323 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.7320
[27] S.A. Rogers and A.B. Kaiser, Thermopower and resistivity of carbon nanotube networks and organic conducting polymers, Current Appl. Phys. 4, 407–410 (2004),
http://dx.doi.org/10.1016/j.cap.2003.11.060