[PDF]
http://dx.doi.org/10.3952/lithjphys.48107
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 35–48 (2008)
INTERACTION OF SYMBOLIC STATES
IN ATOMIC STRUCTURE COMPUTATIONS
R. Matulionienėa, D. Ellisa, and C. Froese
Fischerb
aDepartment of Physics & Astronomy MS 111, The
University of Toledo, Toledo, Ohio 43606, USA
E-mail: dellis@utnet.utoledo.edu
bDepartment of Computer Science, Box 1679B,
Vanderbilt University, Nashville, Tennessee 37235, USA
Received 15 October 2007; accepted
21 November 2007
We derive general equations for
angular coefficients needed to carry out atomic structure
computations using symbolic state expansions. In this new approach
the energy is expressed, not in terms of kinetic energy and Slater
integrals, but in terms of two-electron matrix elements, with
coefficients that are independent of the one-electron quantum
numbers involved in these matrix elements. Specific results are
given for the matrix elements of a symmetric scalar two-body
operator involving single-replacement and double-replacement
symbolic states. The derivations use jj coupling,
coefficients of fractional parentage for nonequivalent electrons,
and diagrammatic angular momentum algebra.
Keywords: atomic structure theory,
symbolic state expansion, angular momentum algebra
PACS: 31.15.-p
SIMBOLINIŲ BŪSENŲ SĄVEIKA
ATOMINĖS SANDAROS SKAIČIAVIMUOSE
R. Matulionienėa, D. Ellisa, C. Froese
Fischerb
aToledo universitetas, Toledas, Ohajas, JAV
bVanderbilto universitetas, Nešvilis, Tenesis,
JAV
Išvestos bendros lygtys kampiniams
koeficientams, kurie reikalingi atliekant atominės sandaros
skaičiavimus, panaudojant skleidinius simbolinėmis būsenomis. Šiuo
naujuoju būdu energija išreiškiama ne kinetinės energijos ir
Sleterio integralais, bet dvielektroniais matriciniais elementais,
kurių koeficientai nepriklauso nuo vienelektronių kvantinių
skaičių, esančių tuose matriciniuose elementuose. Pateikti
konkretūs rezultatai simetrinio skaliarinio dvidalelio
operatoriaus su viengubo ir dvigubo keitimo simbolinėmis būsenomis
matriciniams elementams. Išvedimui naudotas jj ryšys,
nelygiaverčių elektronų kilminiai koeficientai ir judėjimo kiekio
momento diagraminė algebra.
References / Nuorodos
[1] C. Froese Fischer and D. Ellis, Lithuanian J. Phys. 44,
121–134 (2004),
http://dx.doi.org/10.3952/lithjphys.44203
[2] A.P. Jucys and A.A. Bandzaitis, The Theory of Angular
Momentum in Quantum Mechanics, 2nd ed. (Mokslas, Vilnius,
1977) [in Russian]
[3] S. Meshkov, Theory of complex spectra, Phys. Rev. 91,
871–876 (1953),
http://dx.doi.org/10.1103/PhysRev.91.871
[4] L. Armstrong Jr., Matrix elements between configurations having
several open shells. II, Phys. Rev. 172, 18–23 (1968),
http://dx.doi.org/10.1103/PhysRev.172.18
[5] A. Starace and L. Armstrong Jr., Photoionization cross sections
for atomic chlorine using an open-shell random-phase approximation,
Phys. Rev. A 13, 1850–1865 (1976),
http://dx.doi.org/10.1103/PhysRevA.13.1850
[6] G. Merkelis, Jucys graphs of angular momentum theory, Lithuanian
J. Phys. 44, 91–120 (2004),
http://dx.doi.org/10.3952/lithjphys.44202
[7] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988),
http://dx.doi.org/10.1142/0270
[8] J.S. Briggs, Evaluation of matrix elements from a graphical
representation of the angular integral, Rev. Mod. Phys. 43,
189–230 (1971),
http://dx.doi.org/10.1103/RevModPhys.43.189
[9] K.-N. Huang, Graphical evaluation of relativistic matrix
elements, Rev. Mod. Phys. 51, 215–236 (1979),
http://dx.doi.org/10.1103/RevModPhys.51.215
[10] A.P. Jucys, I.B. Levinson, and V.V. Vanagas, Mathematical
Apparatus of the Theory of Angular Momentum (Israel Program
for Scientific Translations, Jerusalem, 1962),
https://www.amazon.co.uk/Mathematical-Apparatus-Theory-Angular-Momentum/dp/B00KFV06YY/
[11] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge
University Press, Cambridge, UK, 1997),
http://dx.doi.org/10.1017/CBO9780511524554
[12] M. Rotenberg, R. Bivins, N. Metropolis, and J.K. Wooten Jr, The
3-j and 6-j Symbols (Technology Press, M.I.T., Cambridge, MA,
1959),
https://www.amazon.co.uk/3-j-6-j-symbols-Manuel-Rotenberg/dp/B0000EGNPF/
[13] R. Matulioniene, Angular Momentum Algebra for Symbolic
Expansions in Atomic Structure Theory, PhD thesis, University
of Toledo, Ohio, USA (1999),
http://adsabs.harvard.edu/abs/1999PhDT.......112M
[14] R.D. Cowan, The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, 1981),
http://www.ucpress.edu/book.php?isbn=9780520038219