[PDF]    http://dx.doi.org/10.3952/lithjphys.48107

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 35–48 (2008)


INTERACTION OF SYMBOLIC STATES IN ATOMIC STRUCTURE COMPUTATIONS
R. Matulionienėa, D. Ellisa, and C. Froese Fischerb
aDepartment of Physics & Astronomy MS 111, The University of Toledo, Toledo, Ohio 43606, USA
E-mail: dellis@utnet.utoledo.edu
bDepartment of Computer Science, Box 1679B, Vanderbilt University, Nashville, Tennessee 37235, USA

Received 15 October 2007; accepted 21 November 2007

We derive general equations for angular coefficients needed to carry out atomic structure computations using symbolic state expansions. In this new approach the energy is expressed, not in terms of kinetic energy and Slater integrals, but in terms of two-electron matrix elements, with coefficients that are independent of the one-electron quantum numbers involved in these matrix elements. Specific results are given for the matrix elements of a symmetric scalar two-body operator involving single-replacement and double-replacement symbolic states. The derivations use jj coupling, coefficients of fractional parentage for nonequivalent electrons, and diagrammatic angular momentum algebra.
Keywords: atomic structure theory, symbolic state expansion, angular momentum algebra
PACS: 31.15.-p


SIMBOLINIŲ BŪSENŲ SĄVEIKA ATOMINĖS SANDAROS SKAIČIAVIMUOSE
R. Matulionienėa, D. Ellisa, C. Froese Fischerb
aToledo universitetas, Toledas, Ohajas, JAV
bVanderbilto universitetas, Nešvilis, Tenesis, JAV

Išvestos bendros lygtys kampiniams koeficientams, kurie reikalingi atliekant atominės sandaros skaičiavimus, panaudojant skleidinius simbolinėmis būsenomis. Šiuo naujuoju būdu energija išreiškiama ne kinetinės energijos ir Sleterio integralais, bet dvielektroniais matriciniais elementais, kurių koeficientai nepriklauso nuo vienelektronių kvantinių skaičių, esančių tuose matriciniuose elementuose. Pateikti konkretūs rezultatai simetrinio skaliarinio dvidalelio operatoriaus su viengubo ir dvigubo keitimo simbolinėmis būsenomis matriciniams elementams. Išvedimui naudotas jj ryšys, nelygiaverčių elektronų kilminiai koeficientai ir judėjimo kiekio momento diagraminė algebra.


References / Nuorodos


[1] C. Froese Fischer and D. Ellis, Lithuanian J. Phys. 44, 121–134 (2004),
http://dx.doi.org/10.3952/lithjphys.44203
[2] A.P. Jucys and A.A. Bandzaitis, The Theory of Angular Momentum in Quantum Mechanics, 2nd ed. (Mokslas, Vilnius, 1977) [in Russian]
[3] S. Meshkov, Theory of complex spectra, Phys. Rev. 91, 871–876 (1953),
http://dx.doi.org/10.1103/PhysRev.91.871
[4] L. Armstrong Jr., Matrix elements between configurations having several open shells. II, Phys. Rev. 172, 18–23 (1968),
http://dx.doi.org/10.1103/PhysRev.172.18
[5] A. Starace and L. Armstrong Jr., Photoionization cross sections for atomic chlorine using an open-shell random-phase approximation, Phys. Rev. A 13, 1850–1865 (1976),
http://dx.doi.org/10.1103/PhysRevA.13.1850
[6] G. Merkelis, Jucys graphs of angular momentum theory, Lithuanian J. Phys. 44, 91–120 (2004),
http://dx.doi.org/10.3952/lithjphys.44202
[7] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988),
http://dx.doi.org/10.1142/0270
[8] J.S. Briggs, Evaluation of matrix elements from a graphical representation of the angular integral, Rev. Mod. Phys. 43, 189–230 (1971),
http://dx.doi.org/10.1103/RevModPhys.43.189
[9] K.-N. Huang, Graphical evaluation of relativistic matrix elements, Rev. Mod. Phys. 51, 215–236 (1979),
http://dx.doi.org/10.1103/RevModPhys.51.215
[10] A.P. Jucys, I.B. Levinson, and V.V. Vanagas, Mathematical Apparatus of the Theory of Angular Momentum (Israel Program for Scientific Translations, Jerusalem, 1962),
https://www.amazon.co.uk/Mathematical-Apparatus-Theory-Angular-Momentum/dp/B00KFV06YY/
[11] Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambridge, UK, 1997),
http://dx.doi.org/10.1017/CBO9780511524554
[12] M. Rotenberg, R. Bivins, N. Metropolis, and J.K. Wooten Jr, The 3-j and 6-j Symbols (Technology Press, M.I.T., Cambridge, MA, 1959),
https://www.amazon.co.uk/3-j-6-j-symbols-Manuel-Rotenberg/dp/B0000EGNPF/
[13] R. Matulioniene, Angular Momentum Algebra for Symbolic Expansions in Atomic Structure Theory, PhD thesis, University of Toledo, Ohio, USA (1999),
http://adsabs.harvard.edu/abs/1999PhDT.......112M
[14] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981),
http://www.ucpress.edu/book.php?isbn=9780520038219