[PDF]
http://dx.doi.org/10.3952/lithjphys.48108
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 107–114 (2008)
SYNTHESIS AND CHARACTERIZATION
OF INORGANIC SORBENTS AND THEIR APPLICATION TO SORPTION OF
RADIONUCLIDES
G. Lujanienėa, S. Meleshevychb, V.
Kanibolotskyyb, K. Mažeikaa, V. Strelkob,
V. Remeikisa, V. Kalenchukb, and J.
Šapolaitėa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: lujaniene@ar.fi.lt
bInstitute for Sorption and Problems of Endoecology,
Generala Naumova 13, UA-03164 Kiev, Ukraine
Received 20 October 2007; accepted
22 February 2008
Titanium silicates and iron oxides
were synthesized. Their structural characteristics and sorption
ability towards a number of radionuclides were studied using
X-ray, Mössbauer, gamma, and alpha spectroscopy as well as the
laboratory batch method. X-ray studies of synthesized titanium
silicates revealed their amorphous structure. Mössbauer
spectrometry showed typical spectra of nanocrystalline goethite,
hematite, magnetite, and the mixture of hematite and magnetite.
Approximate size of nanocrystalline minerals was determined and it
was in the range from about 14 to 30 nm. Distribution coefficient
(Kd) values obtained using the laboratory batch method ranged from
390 to 163000 ml/g for Sr, from 6 to 40470 ml/g for Cs, from 220
to 257000 ml/g for Pu, and from 50 to 16260 ml/g for Am.
Keywords: titanium silicates, iron
oxides, sorption Cs, Sr, Pu, Am, distribution coefficient
PACS: 28.41.Kw, 82.33.-z, 82.80.Ej, 82.80.Ip
NEORGANINIŲ SORBENTŲ SINTEZĖ IR
APIBŪDINIMAS BEI JŲ TAIKYMAS RADIOAKTYVIŲJŲ NUKLIDŲ SORBCIJAI
G. Lujanienėa, S. Meleshevychb, V.
Kanibolotskyyb, K. Mažeikaa, V. Strelkob,
V. Remeikisa, V. Kalenchukb, J. Šapolaitėa
aFizikos institutas, Vilnius, Lietuva
bSorbcijos ir endoekologijos problemų
institutas, Kijevas, Ukraina
Susintetinti titano silikatai ir geležies
oksidai. Naudojant Rentgeno, Mesbauerio, gama ir alfa
spektroskopiją bei laboratorinės sorbcijos metodu buvo tiriamos
gautų neorganinių sorbentų struktūrinės charakteristikos ir cezio,
stroncio, plutonio ir americio sorbcijos geba. Rentgeno
spektroskopijos metodu tiriant susintetintą titano silikatą,
nustatyta jo amorfinė struktūra. Pritaikius Mesbauerio
spektrometriją gauti būdingi nanokristalinio getito, hematito,
magnetito bei hematito ir magnetito mišinio spektrai. Buvo
įvertintas nanokristalinių mineralų dydis, kuris kito nuo 14 iki
30 nm. Pasiskirstymo koeficiento (Kd) vertės, gautos laboratorinės
sorbcijos metodu, kito nuo 390 iki 163000 ml/g Sr, nuo 6 iki 40470
ml/g Cs, nuo 220 iki 257000 ml/g Pu ir nuo 50 iki 16260 ml/g Am.
Susintetinti neorganiniai sorbentai yra labai chemiškai stabilūs
ir ypatingai atrankiai sorbuoja radiostroncį bei radiocezį, net ir
didelių Na+, Ca2+ ir Mg2+
koncentracijų tirpaluose. Pu sorbcijos kinetikos eksperimentų metu
pastebėta, kad reikia palyginti trumpo laiko pusiausvyrai pasiekti
(2 val. nuo sorbcijos pradžios). Ištyrus susintetintą magnetito ir
hematito mišinį parodyta, kad šio mišinio Pu sorbcijos geba
geresnė, nei gryno magnetito.
References / Nuorodos
[1] A. Clearfield, Structure and ion exchange properties of tunnel
type titanium silicates, Solid State Sci. 3, 103–112 (2001),
http://dx.doi.org/10.1016/S1293-2558(00)01113-4
[2] D.M. Poojary, A.I. Bortun, L.N. Bortun, and A. Clearfield,
Sructural studies on the ion-exchanged phases of porous
titanosilicate, Na2Ti2SiO7·2H2O,
Inorg. Chem. 35, 6131–6139 (1996),
http://dx.doi.org/10.1021/ic960378r
[3] A. Bhaumik, S. Samanta, and N.K. Mal, Highly active disordered
extra large pore titanium silicate, Microporous Mesoporous Mater. 68,
29–35 (2004),
http://dx.doi.org/10.1016/j.micromeso.2003.12.005
[4] Combined Methods for Liquid Radioactive Waste Treatment,
IAEA–TECDOC–1336 (IAEA, Vienna, 2003),
[PDF]
[5] R.G. Dosch, N.E. Brown, H.P. Stephens, and R.G. Anthony,
Treatment of liquid nuclear wastes with advanced forms of titanate
ion exchangers, in: Proceedings of the International Symposium
on Waste Management '93, Vol. 2 (Tucson, Arizona Board of
Regents, Phoenix, AZ, 1993) p. 1751
[6] Application of Ion Exchange Processes for the Treatment of
Radioactive Waste and Management of Spent Ion Exchangers, IAEA
Technical Reports Series No. 408 (IAEA, Vienna, 2002),
[PDF]
[7] J.D. Navratil, Pre-analysis separation and concentration of
actinides in groundwater using a magnetic filtration/sorption method
I. Background and concept, J. Radioanal. Nucl. Chem. 248,
571–574 (2001),
http://dx.doi.org/10.1023/A:1010670612775
[8] J.D. Navratil, Advances in treatment methods for uranium
contaminated soil and water, Arch. Oncol. 9, 257–260 (2001),
http://www.onk.ns.ac.rs/archive/Article_Contents.asp?FindArticles_Action=Find%28%27ArticleID%27,%27v9n4p257%27%29
[9] V. Kanibolotskyy, S. Meleshevych, V. Strelko, V. Kalenchuk, and
N. Shenk, Process of preparation of titanosilicate ion-exchanger,
Patent of Ukraine No. 76786A, IPC6 C01B 33 / 20; claimed 07.05.2004;
published 15.09.2006; Bull. No. 9 [in Russian]
[10] S. Meleshevych, V. Kalenchuk, V. Kanibolotskyy, N. Shenk, V.
Strelko, T. Psaryova, and O. Zakutevskyy, Process of preparation of
titanosilicate ion-exchanger, Patent of Ukraine No. 76886A, IPC6
C01B 33 / 20; claimed 23.12.2004; published 15.09.2006; Bull. No. 9
[in Russian]
[11] U. Schwertmann and R.M. Cornell, Iron Oxides in the
Laboratory (VCH Verlag, Weinheim, Germany, 1991)
[12] P. Raming, A.J.A. Winnubst, C.M. van Kats, and A.P. Philips,
The synthesis and magnetic properties of nanosized hematite
(α-Fe2O3) particles, J. Colloid Interface Sci. 249, 346–350
(2002),
http://dx.doi.org/10.1006/jcis.2001.8194
[13] G. Lefevre, S. Noinville, and M. Fedoroff, Use of attenuated
total reflection – infrared spectroscopy to in situ study adsorption
of uranyl onto hematite, J. Colloid Interface Sci. 296,
608–613 (2006),
http://dx.doi.org/10.1016/j.jcis.2005.09.016
[14] N.V. Keltsev, The Essential Principles of Adsorption
Engineering (Khimia, Moscow, 1984) [in Russian]
[15] G. Lujanienė, J. Šapolaitė, A. Amulevičius, K. Mažeika, and S.
Motiejūnas, Retention of cesium, plutonium and americium by
engineered and natural barriers, Czech J. Phys. 56,
D103–D110 (2006),
http://dx.doi.org/10.1007/s10582-006-1005-6
[16] G. Lujanienė, S. Motiejūnas, and J. Šapolaitė, Sorption of Cs,
Pu, Am on clay minerals. J. Radioanal. Nucl. Chem. 274,
345–353 (2007),
http://dx.doi.org/10.1007/s10967-007-1121-1
[17] G.J. Long, D. Hautot, F. Grandjean, D. Vandormael, and H.P.
Leighly, A Mössbauer spectral study of the hull steel and rusticles
recovered from Titanic, Hyperfine Interactions 155, 1–13
(2004),
http://dx.doi.org/10.1023/B:HYPE.0000035148.76152.5b
[18] K. Mažeika, J. Reklaitis, G. Lujanienė, D. Baltrūnas, and A.
Baltušnikas, Modification of nanocrystalline magnetite by milling,
Lithuanian J. Phys. 46, 451–457 (2006),
http://dx.doi.org/10.3952/lithjphys.46408