[PDF]    http://dx.doi.org/10.3952/lithjphys.48108

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 107–114 (2008)


SYNTHESIS AND CHARACTERIZATION OF INORGANIC SORBENTS AND THEIR APPLICATION TO SORPTION OF RADIONUCLIDES
G. Lujanienėa, S. Meleshevychb, V. Kanibolotskyyb, K. Mažeikaa, V. Strelkob, V. Remeikisa, V. Kalenchukb, and J. Šapolaitėa
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: lujaniene@ar.fi.lt
bInstitute for Sorption and Problems of Endoecology, Generala Naumova 13, UA-03164 Kiev, Ukraine

Received 20 October 2007; accepted 22 February 2008

Titanium silicates and iron oxides were synthesized. Their structural characteristics and sorption ability towards a number of radionuclides were studied using X-ray, Mössbauer, gamma, and alpha spectroscopy as well as the laboratory batch method. X-ray studies of synthesized titanium silicates revealed their amorphous structure. Mössbauer spectrometry showed typical spectra of nanocrystalline goethite, hematite, magnetite, and the mixture of hematite and magnetite. Approximate size of nanocrystalline minerals was determined and it was in the range from about 14 to 30 nm. Distribution coefficient (Kd) values obtained using the laboratory batch method ranged from 390 to 163000 ml/g for Sr, from 6 to 40470 ml/g for Cs, from 220 to 257000 ml/g for Pu, and from 50 to 16260 ml/g for Am.
Keywords: titanium silicates, iron oxides, sorption Cs, Sr, Pu, Am, distribution coefficient
PACS: 28.41.Kw, 82.33.-z, 82.80.Ej, 82.80.Ip


NEORGANINIŲ SORBENTŲ SINTEZĖ IR APIBŪDINIMAS BEI JŲ TAIKYMAS RADIOAKTYVIŲJŲ NUKLIDŲ SORBCIJAI
G. Lujanienėa, S. Meleshevychb, V. Kanibolotskyyb, K. Mažeikaa, V. Strelkob, V. Remeikisa, V. Kalenchukb, J. Šapolaitėa
aFizikos institutas, Vilnius, Lietuva
bSorbcijos ir endoekologijos problemų institutas, Kijevas, Ukraina

Susintetinti titano silikatai ir geležies oksidai. Naudojant Rentgeno, Mesbauerio, gama ir alfa spektroskopiją bei laboratorinės sorbcijos metodu buvo tiriamos gautų neorganinių sorbentų struktūrinės charakteristikos ir cezio, stroncio, plutonio ir americio sorbcijos geba. Rentgeno spektroskopijos metodu tiriant susintetintą titano silikatą, nustatyta jo amorfinė struktūra. Pritaikius Mesbauerio spektrometriją gauti būdingi nanokristalinio getito, hematito, magnetito bei hematito ir magnetito mišinio spektrai. Buvo įvertintas nanokristalinių mineralų dydis, kuris kito nuo 14 iki 30 nm. Pasiskirstymo koeficiento (Kd) vertės, gautos laboratorinės sorbcijos metodu, kito nuo 390 iki 163000 ml/g Sr, nuo 6 iki 40470 ml/g Cs, nuo 220 iki 257000 ml/g Pu ir nuo 50 iki 16260 ml/g Am. Susintetinti neorganiniai sorbentai yra labai chemiškai stabilūs ir ypatingai atrankiai sorbuoja radiostroncį bei radiocezį, net ir didelių Na+, Ca2+ ir Mg2+ koncentracijų tirpaluose. Pu sorbcijos kinetikos eksperimentų metu pastebėta, kad reikia palyginti trumpo laiko pusiausvyrai pasiekti (2 val. nuo sorbcijos pradžios). Ištyrus susintetintą magnetito ir hematito mišinį parodyta, kad šio mišinio Pu sorbcijos geba geresnė, nei gryno magnetito.


References / Nuorodos


[1] A. Clearfield, Structure and ion exchange properties of tunnel type titanium silicates, Solid State Sci. 3, 103–112 (2001),
http://dx.doi.org/10.1016/S1293-2558(00)01113-4
[2] D.M. Poojary, A.I. Bortun, L.N. Bortun, and A. Clearfield, Sructural studies on the ion-exchanged phases of porous titanosilicate, Na2Ti2SiO7·2H2O, Inorg. Chem. 35, 6131–6139 (1996),
http://dx.doi.org/10.1021/ic960378r
[3] A. Bhaumik, S. Samanta, and N.K. Mal, Highly active disordered extra large pore titanium silicate, Microporous Mesoporous Mater. 68, 29–35 (2004),
http://dx.doi.org/10.1016/j.micromeso.2003.12.005
[4] Combined Methods for Liquid Radioactive Waste Treatment, IAEA–TECDOC–1336 (IAEA, Vienna, 2003),
[PDF]
[5] R.G. Dosch, N.E. Brown, H.P. Stephens, and R.G. Anthony, Treatment of liquid nuclear wastes with advanced forms of titanate ion exchangers, in: Proceedings of the International Symposium on Waste Management '93, Vol. 2 (Tucson, Arizona Board of Regents, Phoenix, AZ, 1993) p. 1751
[6] Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers, IAEA Technical Reports Series No. 408 (IAEA, Vienna, 2002),
[PDF]
[7] J.D. Navratil, Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method I. Background and concept, J. Radioanal. Nucl. Chem. 248, 571–574 (2001),
http://dx.doi.org/10.1023/A:1010670612775
[8] J.D. Navratil, Advances in treatment methods for uranium contaminated soil and water, Arch. Oncol. 9, 257–260 (2001),
http://www.onk.ns.ac.rs/archive/Article_Contents.asp?FindArticles_Action=Find%28%27ArticleID%27,%27v9n4p257%27%29
[9] V. Kanibolotskyy, S. Meleshevych, V. Strelko, V. Kalenchuk, and N. Shenk, Process of preparation of titanosilicate ion-exchanger, Patent of Ukraine No. 76786A, IPC6 C01B 33 / 20; claimed 07.05.2004; published 15.09.2006; Bull. No. 9 [in Russian]
[10] S. Meleshevych, V. Kalenchuk, V. Kanibolotskyy, N. Shenk, V. Strelko, T. Psaryova, and O. Zakutevskyy, Process of preparation of titanosilicate ion-exchanger, Patent of Ukraine No. 76886A, IPC6 C01B 33 / 20; claimed 23.12.2004; published 15.09.2006; Bull. No. 9 [in Russian]
[11] U. Schwertmann and R.M. Cornell, Iron Oxides in the Laboratory (VCH Verlag, Weinheim, Germany, 1991)
[12] P. Raming, A.J.A. Winnubst, C.M. van Kats, and A.P. Philips, The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles, J. Colloid Interface Sci. 249, 346–350 (2002),
http://dx.doi.org/10.1006/jcis.2001.8194
[13] G. Lefevre, S. Noinville, and M. Fedoroff, Use of attenuated total reflection – infrared spectroscopy to in situ study adsorption of uranyl onto hematite, J. Colloid Interface Sci. 296, 608–613 (2006),
http://dx.doi.org/10.1016/j.jcis.2005.09.016
[14] N.V. Keltsev, The Essential Principles of Adsorption Engineering (Khimia, Moscow, 1984) [in Russian]
[15] G. Lujanienė, J. Šapolaitė, A. Amulevičius, K. Mažeika, and S. Motiejūnas, Retention of cesium, plutonium and americium by engineered and natural barriers, Czech J. Phys. 56, D103–D110 (2006),
http://dx.doi.org/10.1007/s10582-006-1005-6
[16] G. Lujanienė, S. Motiejūnas, and J. Šapolaitė, Sorption of Cs, Pu, Am on clay minerals. J. Radioanal. Nucl. Chem. 274, 345–353 (2007),
http://dx.doi.org/10.1007/s10967-007-1121-1
[17] G.J. Long, D. Hautot, F. Grandjean, D. Vandormael, and H.P. Leighly, A Mössbauer spectral study of the hull steel and rusticles recovered from Titanic, Hyperfine Interactions 155, 1–13 (2004),
http://dx.doi.org/10.1023/B:HYPE.0000035148.76152.5b
[18] K. Mažeika, J. Reklaitis, G. Lujanienė, D. Baltrūnas, and A. Baltušnikas, Modification of nanocrystalline magnetite by milling, Lithuanian J. Phys. 46, 451–457 (2006),
http://dx.doi.org/10.3952/lithjphys.46408