[PDF]
http://dx.doi.org/10.3952/lithjphys.48109
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 5–16 (2008)
ANALYTICAL TREATMENT OF THE
DELAYED FEEDBACK CONTROLLED LORENZ SYSTEM CLOSE TO A SUBCRITICAL
HOPF BIFURCATION
V. Pyragas and K. Pyragas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt
Received 23 October 2007; revised
27 November 2007; accepted 22 February 2008
We develop an analytical approach
for the delayed feedback control of the Lorenz system close to a
subcritical Hopf bifurcation. The periodic orbits arising at this
bifurcation have no torsion and cannot be stabilized by a
conventional delayed feedback control technique. We utilize a
modification based on an unstable delayed feedback controller. The
analytical approach employs the centre manifold theory, the near
identity transformation, and averaging. We derive the
characteristic equation for the Floquet exponents of the
controlled orbit in an analytical form and obtain simple
expressions for the threshold of stability as well as for an
optimal value of the control gain. The analytical results are
supported by numerical analysis of the original system of
nonlinear differential-difference equations.
Keywords: chaos, dynamical systems,
delayed feedback control, Lorenz system, subcritical Hopf
bifurcation, centre manifold theory, near identity transformation,
averaging
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks
UŽDELSTO GRĮŽTAMOJO RYŠIO
VALDOMOS LORENCO SISTEMOS ANALIZINIS TYRIMAS SUBKRIZINĖS HOPFO
BIFURKACIJOS APLINKOJE
V. Pyragas, K. Pyragas
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Išplėtojame analizinę teoriją uždelsto
grįžtamojo ryšio valdikliui (UGRV), valdančiam Lorenco sistemą,
esančią arti subkrizinės Hopfo bifurkacijos taško. Šios
bifurkacijos metu atsirandančių periodinių orbitų topologija
riboja UGRV, ir jų neįmanoma stabilizuoti įprastiniu UGRV metodu.
Topologiniam ribojimui apeiti naudojame nestabilų valdiklį.
Analiziniai tyrimai grindžiami centrinės daugdaros teorija, beveik
tapačia transformacija bei vidurkinimo metodu. Analiziškai gauname
charakteringas lygtis, kurių šaknys yra valdomos orbitos Flokė
rodikliai. Taip pat gauname paprastas išraiškas, nusakančias
valdiklio grįžtamojo ryšio stiprio stabilumo slenkstinę bei
optimalią vertę. Analizinius rezultatus patvirtina išeitinės
valdomos Lorenco sistemos skaitinis integravimas.
References / Nuorodos
[1] K. Pyragas, Continuous control of chaos by self-controlling
feedback, Phys. Lett. A 170, 421–427 (1992),
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[2] K. Pyragas and A. Tamaševičius, Experimental control of chaos by
delayed self-controlling feedback, Phys. Lett. A 180, 99–102
(1993),
http://dx.doi.org/10.1016/0375-9601(93)90501-P
[3] A. Kittel, J. Parisi, K. Pyragas, and R. Richter, Delayed
feedback control of chaos in an electronic double-scroll oscillator,
Z. Naturforsch. 49a, 843–846 (1994),
http://dx.doi.org/10.1515/zna-1994-0904
[4] D.J. Gauthier, D.W. Sukow, H.M. Concannon, and J.E.S. Socolar,
Stabilizing unstable periodic orbits in a fast diode resonator using
continuous time-delay autosynchronization, Phys. Rev. E 50,
2343–2346 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.2343
[5] P. Celka, Experimental verification of Pyragas's chaos control
method applied to Chua's circuit, Int. J. Bifurcation Chaos Appl.
Sci. Eng. 4, 1703–1706 (1994),
http://dx.doi.org/10.1142/S0218127494001313
[6] T. Hikihara and T. Kawagoshi, Experimental study on
stabilization of unstable periodic motion in magnetoelastic chaos,
Phys. Lett. A 211, 29–36 (1996),
http://dx.doi.org/10.1016/0375-9601(95)00925-6
[7] D.J. Christini, V. In, M.L. Spano, W.L. Ditto, and J.J. Collins,
Real-time experimental control of a system in its chaotic and
nonchaotic regimes, Phys. Rev. E 56, R3749–R3752 (1997),
http://dx.doi.org/10.1103/PhysRevE.56.R3749
[8] S. Bielawski, D. Derozier, and P. Glorieux, Controlling unstable
periodic orbits by a delayed continuous feedback, Phys. Rev. E 49,
R971–R974 (1994),
http://dx.doi.org/10.1103/PhysRevE.49.R971
[9] M. Basso, R. Genesio R, and A. Tesi, Controller design for
extending periodic dynamics of a chaotic CO2 laser, Systems Control
Lett. 31, 287–297 (1997),
http://dx.doi.org/10.1016/S0167-6911(97)00044-3
[10] W. Lu, D. Yu, and R.G. Harrison, Instabilities and tracking of
travelling wave patterns in a three-level laser, Int. J. Bifurcation
Chaos Appl. Sci. Eng. 8, 1769–1775 (1998),
http://dx.doi.org/10.1142/S0218127498001479
[11] T. Pierre, G. Bonhomme, and A. Atipo, Controlling a chaotic
regime of nonlinear ionization waves using the time-delay
autosynchronization method, Phys. Rev. Lett. 76, 2290–2293
(1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2290
[12] E. Gravier, X. Caron, G. Bonhomme, T. Pierre, and J.L.
Briançon, Dynamical study and control of drift waves in a magnetized
laboratory plasma, Eur. Phys. J. D 8, 451–457 (2000),
http://dx.doi.org/10.1007/s100530050055
[13] Th. Mausbach, Th. Klinger, A. Piel, A. Atipo, Th. Pierre, and
G. Bonhomme, Continuous control of ionization wave chaos by
spatially derived feedback signals, Phys. Lett. A 228,
373–380 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00151-5
[14] T. Fukuyama, H. Shirahama, and Y. Kawai, Dynamical control of
the chaotic state of the current-driven ion acoustic instability in
a laboratory plasma using delayed feedback, Phys. Plasmas 9,
4525–4529 (2002),
http://dx.doi.org/10.1063/1.1513469
[15] O. Lüthje, S. Wolff, and G. Pfister, Control of chaotic
Taylor–Couette flow with time-delayed feedback, Phys. Rev. Lett. 86,
1745–1748 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.1745
[16] P. Parmananda, R Madrigal, M. Rivera, L. Nyikos, I.Z. Kiss, and
V. Gaspar, Stabilization of unstable steady states and periodic
orbits in an electrochemical system using delayed feedback control,
Phys. Rev. E 59, 5266–5271 (1999),
http://dx.doi.org/10.1103/PhysRevE.59.5266
[17] A. Guderian, A.F. Münster, M. Kraus, and F.W. Schneider,
Electrochemical chaos control in a chemical reaction: Experiment and
simulation, J. Phys. Chem. A 102, 5059–5064 (1998),
http://dx.doi.org/10.1021/jp980997g
[18] H. Benner and W. Just, Control of chaos by time-delayed
feedback in high-power ferromagnetic resonance experiments, J.
Korean Phys. Soc. 40, 1046–1050 (2002),
http://old.kps.or.kr/jkps/abstract_view.asp?articleuid=F0B651B2-0416-43CD-ADE4-35C20D6AF3AA
[19] J.M. Krodkiewski and J.S. Faragher, Stabilization of motion of
helicopter rotor blades using delayed feedback – modelling, computer
simulation and experimental verification, J. Sound Vibration 234,
591–610 (2000),
http://dx.doi.org/10.1006/jsvi.1999.2878
[20] K. Hall, D.J. Christini, M. Tremblay, J.J. Collins, L. Glass,
and J. Billette, Dynamic control of cardiac alternans, Phys. Rev.
Lett. 78, 4518–4521 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.4518
[21] K. Pyragas, Delayed feedback control of chaos, Philos. Trans.
R. Soc. London, Ser. A 364, 2309–2334 (2006),
http://dx.doi.org/10.1098/rsta.2006.1827
[22] M.G. Rosenblum and A.S. Pikovsky, Controlling synchronization
in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 92,
114102 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.114102
[23] M.G. Rosenblum and A.S. Pikovsky, Delayed feedback control of
collective synchrony: An approach to suppression of pathological
brain rhythms, Phys. Rev. E 70, 041904 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.041904
[24] O.V. Popovych, C. Hauptmann, and P.A. Tass, Effective
desynchronization by nonlinear delayed feedback, Phys. Rev. Lett. 94,
164102 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.164102
[25] H. Nakajima, On analytical properties of delayed feedback
control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00362-9
[26] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner,
Mechanism of time-delayed feedback control, Phys. Rev. Lett. 78,
203–206 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.203
[27] K. Pyragas, Analytical properties and optimization of
time-delayed feedback control, Phys. Rev. E 66, 026207
(2002),
http://dx.doi.org/10.1103/PhysRevE.66.026207
[28] K. Pyragas, V. Pyragas, and H. Benner, Delayed feedback control
of dynamical systems at a subcritical Hopf bifurcation, Phys. Rev. E
70, 056222 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.056222
[29] T. Pyragienė and K. Pyragas, Delayed feedback control of forced
self-sustained oscillations, Phys. Rev. E 72, 0260203
(2005),
http://dx.doi.org/10.1103/PhysRevE.72.026203
[30] K. Pyragas, Control of chaos via an unstable delayed feedback
controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265
[31] E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20,
130–141 (1963),
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[32] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields, Applied
Mathematical Sciences Vol. 42 (Springer, New York, 1983),
http://dx.doi.org/10.1007/978-1-4612-1140-2
[33] A. Kittel, J. Parisi, and K. Pyragas, Delayed feedback control
of chaos by self-adapted delay time, Phys. Lett. A 198,
433–436 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00094-J
[34] W. Just, D. Reckwerth, J. Mockel, E. Reibold, and H. Benner,
Delayed feedback control of periodic orbits in autonomous systems,
Phys. Rev. Lett. 81, 562–565 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.562
[35] K. Pyragas, Control of chaos via extended delay feedback, Phys.
Lett. A 206, 323–330 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00654-L