[PDF]    http://dx.doi.org/10.3952/lithjphys.48109

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 5–16 (2008)


ANALYTICAL TREATMENT OF THE DELAYED FEEDBACK CONTROLLED LORENZ SYSTEM CLOSE TO A SUBCRITICAL HOPF BIFURCATION
V. Pyragas and K. Pyragas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: viktpy@pfi.lt, pyragas@kes0.pfi.lt

Received 23 October 2007; revised 27 November 2007; accepted 22 February 2008

We develop an analytical approach for the delayed feedback control of the Lorenz system close to a subcritical Hopf bifurcation. The periodic orbits arising at this bifurcation have no torsion and cannot be stabilized by a conventional delayed feedback control technique. We utilize a modification based on an unstable delayed feedback controller. The analytical approach employs the centre manifold theory, the near identity transformation, and averaging. We derive the characteristic equation for the Floquet exponents of the controlled orbit in an analytical form and obtain simple expressions for the threshold of stability as well as for an optimal value of the control gain. The analytical results are supported by numerical analysis of the original system of nonlinear differential-difference equations.
Keywords: chaos, dynamical systems, delayed feedback control, Lorenz system, subcritical Hopf bifurcation, centre manifold theory, near identity transformation, averaging
PACS: 05.45.Gg, 02.30.Yy, 02.30.Ks


UŽDELSTO GRĮŽTAMOJO RYŠIO VALDOMOS LORENCO SISTEMOS ANALIZINIS TYRIMAS SUBKRIZINĖS HOPFO BIFURKACIJOS APLINKOJE
V. Pyragas, K. Pyragas
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Išplėtojame analizinę teoriją uždelsto grįžtamojo ryšio valdikliui (UGRV), valdančiam Lorenco sistemą, esančią arti subkrizinės Hopfo bifurkacijos taško. Šios bifurkacijos metu atsirandančių periodinių orbitų topologija riboja UGRV, ir jų neįmanoma stabilizuoti įprastiniu UGRV metodu. Topologiniam ribojimui apeiti naudojame nestabilų valdiklį. Analiziniai tyrimai grindžiami centrinės daugdaros teorija, beveik tapačia transformacija bei vidurkinimo metodu. Analiziškai gauname charakteringas lygtis, kurių šaknys yra valdomos orbitos Flokė rodikliai. Taip pat gauname paprastas išraiškas, nusakančias valdiklio grįžtamojo ryšio stiprio stabilumo slenkstinę bei optimalią vertę. Analizinius rezultatus patvirtina išeitinės valdomos Lorenco sistemos skaitinis integravimas.


References / Nuorodos


[1] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170, 421–427 (1992),
http://dx.doi.org/10.1016/0375-9601(92)90745-8
[2] K. Pyragas and A. Tamaševičius, Experimental control of chaos by delayed self-controlling feedback, Phys. Lett. A 180, 99–102 (1993),
http://dx.doi.org/10.1016/0375-9601(93)90501-P
[3] A. Kittel, J. Parisi, K. Pyragas, and R. Richter, Delayed feedback control of chaos in an electronic double-scroll oscillator, Z. Naturforsch. 49a, 843–846 (1994),
http://dx.doi.org/10.1515/zna-1994-0904
[4] D.J. Gauthier, D.W. Sukow, H.M. Concannon, and J.E.S. Socolar, Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization, Phys. Rev. E 50, 2343–2346 (1994),
http://dx.doi.org/10.1103/PhysRevE.50.2343
[5] P. Celka, Experimental verification of Pyragas's chaos control method applied to Chua's circuit, Int. J. Bifurcation Chaos Appl. Sci. Eng. 4, 1703–1706 (1994),
http://dx.doi.org/10.1142/S0218127494001313
[6] T. Hikihara and T. Kawagoshi, Experimental study on stabilization of unstable periodic motion in magnetoelastic chaos, Phys. Lett. A 211, 29–36 (1996),
http://dx.doi.org/10.1016/0375-9601(95)00925-6
[7] D.J. Christini, V. In, M.L. Spano, W.L. Ditto, and J.J. Collins, Real-time experimental control of a system in its chaotic and nonchaotic regimes, Phys. Rev. E 56, R3749–R3752 (1997),
http://dx.doi.org/10.1103/PhysRevE.56.R3749
[8] S. Bielawski, D. Derozier, and P. Glorieux, Controlling unstable periodic orbits by a delayed continuous feedback, Phys. Rev. E 49, R971–R974 (1994),
http://dx.doi.org/10.1103/PhysRevE.49.R971
[9] M. Basso, R. Genesio R, and A. Tesi, Controller design for extending periodic dynamics of a chaotic CO2 laser, Systems Control Lett. 31, 287–297 (1997),
http://dx.doi.org/10.1016/S0167-6911(97)00044-3
[10] W. Lu, D. Yu, and R.G. Harrison, Instabilities and tracking of travelling wave patterns in a three-level laser, Int. J. Bifurcation Chaos Appl. Sci. Eng. 8, 1769–1775 (1998),
http://dx.doi.org/10.1142/S0218127498001479
[11] T. Pierre, G. Bonhomme, and A. Atipo, Controlling a chaotic regime of nonlinear ionization waves using the time-delay autosynchronization method, Phys. Rev. Lett. 76, 2290–2293 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2290
[12] E. Gravier, X. Caron, G. Bonhomme, T. Pierre, and J.L. Briançon, Dynamical study and control of drift waves in a magnetized laboratory plasma, Eur. Phys. J. D 8, 451–457 (2000),
http://dx.doi.org/10.1007/s100530050055
[13] Th. Mausbach, Th. Klinger, A. Piel, A. Atipo, Th. Pierre, and G. Bonhomme, Continuous control of ionization wave chaos by spatially derived feedback signals, Phys. Lett. A 228, 373–380 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00151-5
[14] T. Fukuyama, H. Shirahama, and Y. Kawai, Dynamical control of the chaotic state of the current-driven ion acoustic instability in a laboratory plasma using delayed feedback, Phys. Plasmas 9, 4525–4529 (2002),
http://dx.doi.org/10.1063/1.1513469
[15] O. Lüthje, S. Wolff, and G. Pfister, Control of chaotic Taylor–Couette flow with time-delayed feedback, Phys. Rev. Lett. 86, 1745–1748 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.1745
[16] P. Parmananda, R Madrigal, M. Rivera, L. Nyikos, I.Z. Kiss, and V. Gaspar, Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed feedback control, Phys. Rev. E 59, 5266–5271 (1999),
http://dx.doi.org/10.1103/PhysRevE.59.5266
[17] A. Guderian, A.F. Münster, M. Kraus, and F.W. Schneider, Electrochemical chaos control in a chemical reaction: Experiment and simulation, J. Phys. Chem. A 102, 5059–5064 (1998),
http://dx.doi.org/10.1021/jp980997g
[18] H. Benner and W. Just, Control of chaos by time-delayed feedback in high-power ferromagnetic resonance experiments, J. Korean Phys. Soc. 40, 1046–1050 (2002),
http://old.kps.or.kr/jkps/abstract_view.asp?articleuid=F0B651B2-0416-43CD-ADE4-35C20D6AF3AA
[19] J.M. Krodkiewski and J.S. Faragher, Stabilization of motion of helicopter rotor blades using delayed feedback – modelling, computer simulation and experimental verification, J. Sound Vibration 234, 591–610 (2000),
http://dx.doi.org/10.1006/jsvi.1999.2878
[20] K. Hall, D.J. Christini, M. Tremblay, J.J. Collins, L. Glass, and J. Billette, Dynamic control of cardiac alternans, Phys. Rev. Lett. 78, 4518–4521 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.4518
[21] K. Pyragas, Delayed feedback control of chaos, Philos. Trans. R. Soc. London, Ser. A 364, 2309–2334 (2006),
http://dx.doi.org/10.1098/rsta.2006.1827
[22] M.G. Rosenblum and A.S. Pikovsky, Controlling synchronization in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 92, 114102 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.114102
[23] M.G. Rosenblum and A.S. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms, Phys. Rev. E 70, 041904 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.041904
[24] O.V. Popovych, C. Hauptmann, and P.A. Tass, Effective desynchronization by nonlinear delayed feedback, Phys. Rev. Lett. 94, 164102 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.164102
[25] H. Nakajima, On analytical properties of delayed feedback control of chaos, Phys. Lett. A 232, 207–210 (1997),
http://dx.doi.org/10.1016/S0375-9601(97)00362-9
[26] W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner, Mechanism of time-delayed feedback control, Phys. Rev. Lett. 78, 203–206 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.203
[27] K. Pyragas, Analytical properties and optimization of time-delayed feedback control, Phys. Rev. E 66, 026207 (2002),
http://dx.doi.org/10.1103/PhysRevE.66.026207
[28] K. Pyragas, V. Pyragas, and H. Benner, Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation, Phys. Rev. E 70, 056222 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.056222
[29] T. Pyragienė and K. Pyragas, Delayed feedback control of forced self-sustained oscillations, Phys. Rev. E 72, 0260203 (2005),
http://dx.doi.org/10.1103/PhysRevE.72.026203
[30] K. Pyragas, Control of chaos via an unstable delayed feedback controller, Phys. Rev. Lett. 86, 2265–2268 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2265
[31] E.N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20, 130–141 (1963),
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[32] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences Vol. 42 (Springer, New York, 1983),
http://dx.doi.org/10.1007/978-1-4612-1140-2
[33] A. Kittel, J. Parisi, and K. Pyragas, Delayed feedback control of chaos by self-adapted delay time, Phys. Lett. A 198, 433–436 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00094-J
[34] W. Just, D. Reckwerth, J. Mockel, E. Reibold, and H. Benner, Delayed feedback control of periodic orbits in autonomous systems, Phys. Rev. Lett. 81, 562–565 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.562
[35] K. Pyragas, Control of chaos via extended delay feedback, Phys. Lett. A 206, 323–330 (1995),
http://dx.doi.org/10.1016/0375-9601(95)00654-L