[PDF]
http://dx.doi.org/10.3952/lithjphys.48112
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 91–97 (2008)
SPIN PROPERTIES OF ELECTRONS IN
A QUANTUM TUBE
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 15 November 2007; revised 27 December
2007; accepted 22 February 2008
Spin properties of electrons, the
wave function of which is confined by cylindrical potential of a
hollow semiconducting cylinder (quantum tube), and which
simultaneously propagate along the cylinder axis are analysed. The
spin–orbit interaction is included via Rashba and Dresselhaus
Hamiltonians. The electron spin surface, which describes all
possible spin eigen- and superposition states, is shown to reduce
to the Bloch sphere, independent of the electron energy and
semiconductor band parameters. The electron dispersion can be
tuned to a regime that is favourable for the operation of the
spin-FET by trimming the diameter of the quantum tube.
Keywords: spintronics, spin–orbit
coupling, quantum well devices
PACS: 85.75.-d, 71.70.Ej, 85.35.Be
ELEKTRONŲ SUKINIO SAVYBĖS
KVANTINIAME VAMZDELYJE
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Išnagrinėtos elektrono sukinio savybės, kai
elektrono banginė funkcija lokalizuota puslaidininkio
cilindriniame potenciale (kvantinio vamzdelio sienelėje) ir kai
elektronas gali judėti išilgai vamzdelio. Sąveika tarp elektrono
sukinio ir jo orbitinio judėjimo įskaityta per Rašbos ir
Dreselhauso hamiltonianus. Gauta, kad elektrono sukinio paviršius
– pastarasis nusako visas galimas savąsias ir superpozicines
elektrono sukinio būsenas – transformuojasi į Blocho sferą,
nepriklausomai nuo puslaidininkį nusakančių parametrų bei
elektrono energijos. Parodyta, kad, parinkus kvantinio vamzdelio
diametrą, galima pasiekti režimą, kuris yra palankus sukinio
tranzistoriaus darbui.
References / Nuorodos
[1] R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical
Properties of Carbon Nanotubes (Imperial College Press,
London, 1999),
http://dx.doi.org/10.1142/p080
[2] P.N. D'yachkov, Carbon Nanotubes (Binom, Moscow, 2006)
[in Russian]
[3] S. Ciraci, A. Boldum, and I.P. Batra, Quantum effects in
electrical and thermal transport through nanowires, J. Phys. Cond.
Matter 13(29), R537–R568 (2001),
http://dx.doi.org/10.1088/0953-8984/13/29/201
[4] C. Schönenberger, Charge and spin transport in carbon nanotubes,
Semicond. Sci. Technol. 21(11), S1–S9 (2006),
http://dx.doi.org/10.1088/0268-1242/21/11/S01
[5] A. Cottet, T. Kontos, S. Sahoo, H.T. Mann, M.-S. Choi, W.
Belzig, C. Bruder, A.F. Morpurgo, and C. Schönenberger,
Nanospintronics with carbon nanotubes, Semicond. Sci. Technol. 21(11),
S78–S95 (2006),
http://dx.doi.org/10.1088/0268-1242/21/11/S11
[6] V.Ya. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy,
V.V. Preobrazhenskii, M.A. Putyato, and T.A. Gavrilova,
Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and
their arrays, Physica E 6(1), 828–831 (2000),
http://dx.doi.org/10.1016/S1386-9477(99)00249-0
[7] O.G. Schmidt and K. Eberl, Thin solid films roll up into
nanotubes, Nature 410(6825), 168 (2001),
http://dx.doi.org/10.1038/35065525
[8] K.J. Friedland, R. Hey, H. Kostial, A. Riedel, and K.H. Ploog,
Measurements of ballistic transport at nonuniform magnetic fields in
cross junctions of a curved two-dimensional electron gas, Phys. Rev.
B 75(4), 045347-1–4 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.045347
[9] L.I. Magarill, D.A. Romanov, and A.V. Chaplik, Two-dimensional
electron kinetics on a curved surface, JETP Lett. 64, 460
(1996) [Pis'ma Zh. Eksp. Teor. Fiz. 64(6), 421–426 (1996)],
http://dx.doi.org/10.1134/1.567220
[10] L.I. Magarill, D.A. Romanov, and A.V. Chaplik, Ballistic
transport and spin–orbit interaction of two-dimensional electrons on
a cylindrical surface, JETP 86(4), 771 (1998) [Zh. Eksp.
Teor. Fiz. 113(4), 1411–1428 (1998)],
http://dx.doi.org/10.1134/1.558538
[11] P.C. Sercel and K.J. Vahala, Analytical formalism for
determining quantum-wire and quantum-dot band structure in the
multiband envelope-function approximation, Phys. Rev. B 42(6),
3690–3710 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.3690
[12] A. Dargys, Spin surfaces and trajectories in valence bands of
tetrahedral semiconductors, Phys. Status Solidi B 241(1),
145–154 (2004),
http://dx.doi.org/10.1002/pssb.200301909
[13] A. Dargys, Free-electron spin surfaces in 3D and 2D zinc-blende
semiconductors, Phys. Status Solidi B 243(8), R54–R56
(2006),
http://dx.doi.org/10.1002/pssb.200642136
[14] A. Dargys, Why the spin-FET does not work?, Lithuanian J. Phys.
47(2), 185–194 (2007),
http://dx.doi.org/10.3952/lithjphys.47202
[15] A. Dargys, Precession trajectories of the hole spin in
zinc-blende semiconductors, Solid-State Electron. 51(1),
93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[16] R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer-Verlag, Berlin–Heidelberg,
2003),
http://dx.doi.org/10.1007/b13586
[17] R. Eppenga and M.F.H. Schuurmans, Effect of bulk inversion
asymmetry on [001], [110], and [111] GaAs/AlAs quantum wells, Phys.
Rev. B 37(18), 10923–10926 (1988),
http://dx.doi.org/10.1103/PhysRevB.37.10923
[18] L. Allen and J.H. Eberly, Optical Resonance and Two-Level
Atoms (John Wiley and Sons, New York, 1975),
http://store.doverpublications.com/0486655334.html
[19] A. Dargys, Coherent properties of hole spin, Lithuanian J.
Phys. 43(2), 123–128 (2003)
[20] S. Datta and B. Das, Electronic analog of the electrooptic
modulator, Appl. Phys. Lett. 56(2), 665–667 (1990),
http://dx.doi.org/10.1063/1.102730
[21] R. H. Silsbee, Spin–orbit induced coupling of charge current
and spin polarization, J. Phys. Cond. Matter 16(7),
R179–R207 (2004),
http://dx.doi.org/10.1088/0953-8984/16/7/R02
[22] G.A. Fiete, Colloquium: The spin-incoherent Luttinger liquid,
Rev. Mod. Phys. 79(3), 801–820 (2007),
http://dx.doi.org/10.1103/RevModPhys.79.801