[PDF]    http://dx.doi.org/10.3952/lithjphys.48112

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 91–97 (2008)


SPIN PROPERTIES OF ELECTRONS IN A QUANTUM TUBE
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 15 November 2007; revised 27 December 2007; accepted 22 February 2008

Spin properties of electrons, the wave function of which is confined by cylindrical potential of a hollow semiconducting cylinder (quantum tube), and which simultaneously propagate along the cylinder axis are analysed. The spin–orbit interaction is included via Rashba and Dresselhaus Hamiltonians. The electron spin surface, which describes all possible spin eigen- and superposition states, is shown to reduce to the Bloch sphere, independent of the electron energy and semiconductor band parameters. The electron dispersion can be tuned to a regime that is favourable for the operation of the spin-FET by trimming the diameter of the quantum tube.
Keywords: spintronics, spin–orbit coupling, quantum well devices
PACS: 85.75.-d, 71.70.Ej, 85.35.Be


ELEKTRONŲ SUKINIO SAVYBĖS KVANTINIAME VAMZDELYJE
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Išnagrinėtos elektrono sukinio savybės, kai elektrono banginė funkcija lokalizuota puslaidininkio cilindriniame potenciale (kvantinio vamzdelio sienelėje) ir kai elektronas gali judėti išilgai vamzdelio. Sąveika tarp elektrono sukinio ir jo orbitinio judėjimo įskaityta per Rašbos ir Dreselhauso hamiltonianus. Gauta, kad elektrono sukinio paviršius – pastarasis nusako visas galimas savąsias ir superpozicines elektrono sukinio būsenas – transformuojasi į Blocho sferą, nepriklausomai nuo puslaidininkį nusakančių parametrų bei elektrono energijos. Parodyta, kad, parinkus kvantinio vamzdelio diametrą, galima pasiekti režimą, kuris yra palankus sukinio tranzistoriaus darbui.


References / Nuorodos


[1] R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999),
http://dx.doi.org/10.1142/p080
[2] P.N. D'yachkov, Carbon Nanotubes (Binom, Moscow, 2006) [in Russian]
[3] S. Ciraci, A. Boldum, and I.P. Batra, Quantum effects in electrical and thermal transport through nanowires, J. Phys. Cond. Matter 13(29), R537–R568 (2001),
http://dx.doi.org/10.1088/0953-8984/13/29/201
[4] C. Schönenberger, Charge and spin transport in carbon nanotubes, Semicond. Sci. Technol. 21(11), S1–S9 (2006),
http://dx.doi.org/10.1088/0268-1242/21/11/S01
[5] A. Cottet, T. Kontos, S. Sahoo, H.T. Mann, M.-S. Choi, W. Belzig, C. Bruder, A.F. Morpurgo, and C. Schönenberger, Nanospintronics with carbon nanotubes, Semicond. Sci. Technol. 21(11), S78–S95 (2006),
http://dx.doi.org/10.1088/0268-1242/21/11/S11
[6] V.Ya. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, and T.A. Gavrilova, Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays, Physica E 6(1), 828–831 (2000),
http://dx.doi.org/10.1016/S1386-9477(99)00249-0
[7] O.G. Schmidt and K. Eberl, Thin solid films roll up into nanotubes, Nature 410(6825), 168 (2001),
http://dx.doi.org/10.1038/35065525
[8] K.J. Friedland, R. Hey, H. Kostial, A. Riedel, and K.H. Ploog, Measurements of ballistic transport at nonuniform magnetic fields in cross junctions of a curved two-dimensional electron gas, Phys. Rev. B 75(4), 045347-1–4 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.045347
[9] L.I. Magarill, D.A. Romanov, and A.V. Chaplik, Two-dimensional electron kinetics on a curved surface, JETP Lett. 64, 460 (1996) [Pis'ma Zh. Eksp. Teor. Fiz. 64(6), 421–426 (1996)],
http://dx.doi.org/10.1134/1.567220
[10] L.I. Magarill, D.A. Romanov, and A.V. Chaplik, Ballistic transport and spin–orbit interaction of two-dimensional electrons on a cylindrical surface, JETP 86(4), 771 (1998) [Zh. Eksp. Teor. Fiz. 113(4), 1411–1428 (1998)],
http://dx.doi.org/10.1134/1.558538
[11] P.C. Sercel and K.J. Vahala, Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation, Phys. Rev. B 42(6), 3690–3710 (1990),
http://dx.doi.org/10.1103/PhysRevB.42.3690
[12] A. Dargys, Spin surfaces and trajectories in valence bands of tetrahedral semiconductors, Phys. Status Solidi B 241(1), 145–154 (2004),
http://dx.doi.org/10.1002/pssb.200301909
[13] A. Dargys, Free-electron spin surfaces in 3D and 2D zinc-blende semiconductors, Phys. Status Solidi B 243(8), R54–R56 (2006),
http://dx.doi.org/10.1002/pssb.200642136
[14] A. Dargys, Why the spin-FET does not work?, Lithuanian J. Phys. 47(2), 185–194 (2007),
http://dx.doi.org/10.3952/lithjphys.47202
[15] A. Dargys, Precession trajectories of the hole spin in zinc-blende semiconductors, Solid-State Electron. 51(1), 93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[16] R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer-Verlag, Berlin–Heidelberg, 2003),
http://dx.doi.org/10.1007/b13586
[17] R. Eppenga and M.F.H. Schuurmans, Effect of bulk inversion asymmetry on [001], [110], and [111] GaAs/AlAs quantum wells, Phys. Rev. B 37(18), 10923–10926 (1988),
http://dx.doi.org/10.1103/PhysRevB.37.10923
[18] L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (John Wiley and Sons, New York, 1975),
http://store.doverpublications.com/0486655334.html
[19] A. Dargys, Coherent properties of hole spin, Lithuanian J. Phys. 43(2), 123–128 (2003)
[20] S. Datta and B. Das, Electronic analog of the electrooptic modulator, Appl. Phys. Lett. 56(2), 665–667 (1990),
http://dx.doi.org/10.1063/1.102730
[21] R. H. Silsbee, Spin–orbit induced coupling of charge current and spin polarization, J. Phys. Cond. Matter 16(7), R179–R207 (2004),
http://dx.doi.org/10.1088/0953-8984/16/7/R02
[22] G.A. Fiete, Colloquium: The spin-incoherent Luttinger liquid, Rev. Mod. Phys. 79(3), 801–820 (2007),
http://dx.doi.org/10.1103/RevModPhys.79.801