[PDF]    http://dx.doi.org/10.3952/lithjphys.48201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 137–144 (2008)


COMPARATIVE INVESTIGATION OF RECOMBINATION CHARACTERISTICS IN PROTON AND ELECTRON IRRADIATED Si STRUCTURES
J. Višniakova, E. Gaubasa, T. Čeponisa, A. Uleckasa, J. Raisanenb, and S. Vayrynenb
aInstitute of Materials Science and Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: j.visniakov@post.skynet.lt, eugenijus.gaubas@ff.vu.lt
bAccelerator Laboratory, University of Helsinki, Pietari Kalmin katu 2, FI-00014 Helsinki, Finland

Received 23 February 2008; revised 14 March 2008; accepted 21 June 2008

Comparative analysis of the carrier recombination and generation lifetime as well as reverse recovery durations (RR), dependent on electron and proton irradiation fluence, has been performed in float zone (FZ) silicon PIN diodes and wafer structures. These investigations have been devoted to determination of the dominant radiation defects and their depth distribution, to design the irradiation technology steps for PIN diodes with fast switching rates. The samples were irradiated with 2 MeV protons and 5–10 MeV electrons with fluences in the range of 7·1012–7·1014 p/cm2 as well as 2.4·1012–5.2·1013 e/cm2, respectively. Carrier decay constituents and values of recombination lifetime have been evaluated by employing a microwave probed photoconductivity transient technique (MW-PC), while deep levels spectra ascribed to generation lifetime variations have been examined by exploiting capacitance deep level transient spectroscopy (C-DLTS). Recombination lifetime decreases from several microseconds to few nanoseconds in the proton irradiated Si, while DLTS spectra show an increase of the amplitude of a DLTS peak at 170 K with irradiation fluence. This peak dominates within DLTS spectra where peaks at 90, as well as at 140 and 250 K, ascribed to vacancy attributed defects, are also present. Recombination lifetime decreases from tens to few microseconds, while vacancy ascribed defects dominate in DLTS spectra under increase of irradiation fluence for the same material irradiated with electrons. Sharply inhomogeneous depth distribution of recombination lifetime in proton irradiated samples has been revealed from the cross-sectional scans of the excess carrier lifetime measured by MW-PC technique. This indicates a formation of the -layer of enhanced recombination in vicinity of the p+n junction of PIN diodes. Meanwhile, the recombination lifetime is nearly constant within depth of the electron irradiated Si samples. These characteristics correlate rather well with reverse recovery time constants of the same PIN diodes.
Keywords: carrier lifetime, reverse recovery time, microwave probed photoconductivity, deep level transient spectroscopy, proton and electron irradiations, radiation defects
PACS: 61.72.Ji, 61.82.Fk, 72.40.+w


REKOMBINACIJOS BŪDINGŲJŲ DYDŽIŲ PALYGINAMASIS TYRIMAS PROTONAIS IR ELEKTRONAIS ŠVITINTUOSE Si DARINIUOSE
J. Višniakova, E. Gaubasa, T. Čeponisa, A. Uleckasa, J. Raisanenb, S. Vayrynenb
aVilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas, Vilnius, Lietuva
bHelsinkio universiteto Dalelių greitintuvų laboratorija, Helsinkis, Suomija

Ištirti rekombinacijos būdingųjų dydžių kitimai Si padėkluose ir dioduose, keičiant 5–10 MeV elektronų ir 1,9–2 MeV protonų integrinį apšvitos srautą. Rekombinacijos parametrai tirti kombinuojant standartinę giliųjų lygmenų talpinę spektroskopiją, mikrobangų sugerties relaksacijos ir diodų perjungimo į užtvarinę būseną trukmės matavimų metodikas. Tarpusavyje palyginus giliųjų lygmenų spektrus protonais ir neutronais apšvitintuose dariniuose, identifikuoti taškiniai ir sankaupiniai radiaciniai defektai ir jų įtaka diodų perjungimo spartai. Kombinuojant ir palyginant tūryje integruotas bei priklausomai nuo gylio diodų bazėje žvalgytas krūvininkų gyvavimo trukmes, įvertinti paspartintos rekombinacijos sluoksnių sudarymo diodų bazės gilumoje parametrai.


References / Nuorodos


[1] B.Y. Baliga, Power Semiconductor Devices (PWS Publishing Company, Boston, 1995),
https://www.amazon.co.uk/Semiconductor-Devices-General-Engineering-1995-05-02/dp/B01JXP8WZM/
[2] F. Hirose, K. Kurita, Y. Takahashi, and M. Mukaida, Operation mechanism on SiGe/Si/Si PIN diodes explained using numerical simulation, Electrochem. Solid-State Lett. 8, G160–G163 (2005),
http://dx.doi.org/10.1149/1.1928229
[3] M. Li, G. Yong, and W. Cai-Lin, A novel type of ultra fast and ultra soft recovery SiGe/Si heterojunction power diode with ideal ohmic contact, Chinese Phys. 13, 1114–1119 (2004),
http://dx.doi.org/10.1088/1009-1963/13/7/026
[4] F. Zhang, W. Yu, Ch. Li, and Xi. Sun, A parametric study for Si p+nn+ diodes in picosecond closing switch applications, Solid-State Electron. 49, 399–403 (2005),
http://dx.doi.org/10.1016/j.sse.2004.11.016
[5] R.M. de Moraes and S.M. Anlage, Unified model and reverse recovery nonlinearities of the driven diode resonator, Phys. Rev. E 68, 026201-1–9 (2003),
http://dx.doi.org/10.1103/PhysRevE.68.026201
[6] K. Bauer, H.-J. Schulze, and F.-J. Niedernostheide, Diffusion processes for high-power devices, in: Proceedings of the 1st International Conference on Diffusion in Solids and Liquids DSL-2005 (Univ. of Aveiro, Aveiro, 2005) pp. 17–24,
[PDF]
[7] S.M. Kang, T.J. Eom, S.J. Kim, H.W. Kim, J.Y. Cho, and Ch. Lee, Reverse recovery characteristics and defect distribution in an electron-irradiated silicon p–n junction diode, Mater. Chem. Phys. 84, 187–191 (2004),
http://dx.doi.org/10.1016/j.matchemphys.2003.11.030
[8] J. Vobecky, P. Hazdra, N. Galster, and E. Carroll, Freewheeling diodes with improved reverse recovery by combined electron and proton irradiation, in: Proceedings of the 8th PEMC'98 (Prague, 1998) pp. 1–4,
[PDF]
[9] E. Gaubas, Transient absorption techniques for investigation of recombination properties in semiconductor materials, Lithuanian J. Phys. 43, 145–165 (2003)
[10] E. Gaubas and J. Vanhellemont, Comparative study of carrier lifetime dependence on dopant concentration in silicon and germanium, J. Electrochem. Soc. 154, H231–H238 (2007),
http://dx.doi.org/10.1149/1.2429031
[11] E. Gaubas and J. Vanhellemont, Microwave and infra red light absorption studies of carrier lifetime in silicon and germanium, Solid State Phenom. 131–133, 149–154 (2008),
http://dx.doi.org/10.4028/www.scientific.net/SSP.131-133.149
[12] E. Gaubas, A. Uleckas, and J. Višniakov, Dose dependent variations of carrier recombination in silicon irradiated by high energy electrons, Lithuanian J. Phys. 47, 457–460 (2007),
http://dx.doi.org/10.3952/lithjphys.47409
[13] E. Gaubas, A. Kadys, A. Uleckas, and J. Vaitkus, Investigation of carrier recombination in Si heavily irradiated by neutrons, Acta Phys. Pol. A 113, 837–840 (2008),
http://dx.doi.org/10.12693/APhysPolA.113.829
[14] S.J. Watts, Radiation induced defects in silicon, in: High Purity Silicon V, Proceedings of the 194th Meeting of Electrochemical Society, Vol. 98-13, eds. C.L. Claeys, P. Rai-Chaudhury, M. Watanabe, P. Stallhofer, and H.J. Dawson (The Electorchem. Soc., Pennington, NJ, 1998), pp. 355–370,
https://www.amazon.co.uk/High-Purity-Silicon-Proceeding-98-13/dp/1566772079/
[15] S.J. Watts, J. Matheson, I.H. Hopkins-Bond, A. Holmes-Siedle, A. Mohammadzadeh, and R. Pace, A new model for generation-recombination in silicon depletion regions after neutron irradiation, IEEE Trans. Nucl. Sci. 43, 2587–2594 (1996),
http://dx.doi.org/10.1109/23.556840
[16] K. Gill, G. Hall, and B. MacEvoy, Bulk damage effects in irradiated silicon detectors due to clustered divacancies, J. Appl. Phys. 82, 126–136 (1997),
http://dx.doi.org/10.1063/1.365790