[PDF]
http://dx.doi.org/10.3952/lithjphys.48201
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 137–144 (2008)
COMPARATIVE INVESTIGATION OF
RECOMBINATION CHARACTERISTICS IN PROTON AND ELECTRON IRRADIATED
Si STRUCTURES
J. Višniakova, E. Gaubasa, T. Čeponisa,
A. Uleckasa, J. Raisanenb, and S. Vayrynenb
aInstitute of Materials Science and Applied
Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius,
Lithuania
E-mail: j.visniakov@post.skynet.lt, eugenijus.gaubas@ff.vu.lt
bAccelerator Laboratory, University of Helsinki,
Pietari Kalmin katu 2, FI-00014 Helsinki, Finland
Received 23 February 2008; revised
14 March 2008; accepted 21 June 2008
Comparative analysis of the
carrier recombination and generation lifetime as well as reverse
recovery durations (RR), dependent on electron and proton
irradiation fluence, has been performed in float zone (FZ) silicon
PIN diodes and wafer structures. These investigations have been
devoted to determination of the dominant radiation defects and
their depth distribution, to design the irradiation technology
steps for PIN diodes with fast switching rates. The samples were
irradiated with 2 MeV protons and 5–10 MeV electrons with fluences
in the range of 7·1012–7·1014 p/cm2
as well as 2.4·1012–5.2·1013 e/cm2,
respectively. Carrier decay constituents and values of
recombination lifetime have been evaluated by employing a
microwave probed photoconductivity transient technique (MW-PC),
while deep levels spectra ascribed to generation lifetime
variations have been examined by exploiting capacitance deep level
transient spectroscopy (C-DLTS). Recombination lifetime decreases
from several microseconds to few nanoseconds in the proton
irradiated Si, while DLTS spectra show an increase of the
amplitude of a DLTS peak at 170 K with irradiation fluence. This
peak dominates within DLTS spectra where peaks at 90, as well as
at 140 and 250 K, ascribed to vacancy attributed defects, are also
present. Recombination lifetime decreases from tens to few
microseconds, while vacancy ascribed defects dominate in DLTS
spectra under increase of irradiation fluence for the same
material irradiated with electrons. Sharply inhomogeneous depth
distribution of recombination lifetime in proton irradiated
samples has been revealed from the cross-sectional scans of the
excess carrier lifetime measured by MW-PC technique. This
indicates a formation of the -layer of enhanced recombination in
vicinity of the p+–n junction of PIN
diodes. Meanwhile, the recombination lifetime is nearly constant
within depth of the electron irradiated Si samples. These
characteristics correlate rather well with reverse recovery time
constants of the same PIN diodes.
Keywords: carrier lifetime, reverse
recovery time, microwave probed photoconductivity, deep level
transient spectroscopy, proton and electron irradiations,
radiation defects
PACS: 61.72.Ji, 61.82.Fk, 72.40.+w
REKOMBINACIJOS BŪDINGŲJŲ DYDŽIŲ
PALYGINAMASIS TYRIMAS PROTONAIS IR ELEKTRONAIS ŠVITINTUOSE Si
DARINIUOSE
J. Višniakova, E. Gaubasa, T. Čeponisa,
A. Uleckasa, J. Raisanenb, S. Vayrynenb
aVilniaus universiteto Medžiagotyros ir taikomųjų
mokslų institutas, Vilnius, Lietuva
bHelsinkio universiteto Dalelių greitintuvų
laboratorija, Helsinkis, Suomija
Ištirti rekombinacijos būdingųjų dydžių kitimai
Si padėkluose ir dioduose, keičiant 5–10 MeV elektronų ir 1,9–2
MeV protonų integrinį apšvitos srautą. Rekombinacijos parametrai
tirti kombinuojant standartinę giliųjų lygmenų talpinę
spektroskopiją, mikrobangų sugerties relaksacijos ir diodų
perjungimo į užtvarinę būseną trukmės matavimų metodikas.
Tarpusavyje palyginus giliųjų lygmenų spektrus protonais ir
neutronais apšvitintuose dariniuose, identifikuoti taškiniai ir
sankaupiniai radiaciniai defektai ir jų įtaka diodų perjungimo
spartai. Kombinuojant ir palyginant tūryje integruotas bei
priklausomai nuo gylio diodų bazėje žvalgytas krūvininkų gyvavimo
trukmes, įvertinti paspartintos rekombinacijos sluoksnių sudarymo
diodų bazės gilumoje parametrai.
References / Nuorodos
[1] B.Y. Baliga, Power Semiconductor Devices (PWS Publishing
Company, Boston, 1995),
https://www.amazon.co.uk/Semiconductor-Devices-General-Engineering-1995-05-02/dp/B01JXP8WZM/
[2] F. Hirose, K. Kurita, Y. Takahashi, and M. Mukaida, Operation
mechanism on SiGe/Si/Si PIN diodes explained using numerical
simulation, Electrochem. Solid-State Lett. 8, G160–G163
(2005),
http://dx.doi.org/10.1149/1.1928229
[3] M. Li, G. Yong, and W. Cai-Lin, A novel type of ultra fast and
ultra soft recovery SiGe/Si heterojunction power diode with ideal
ohmic contact, Chinese Phys. 13, 1114–1119 (2004),
http://dx.doi.org/10.1088/1009-1963/13/7/026
[4] F. Zhang, W. Yu, Ch. Li, and Xi. Sun, A parametric study for Si
p+nn+ diodes in picosecond closing switch
applications, Solid-State Electron. 49, 399–403 (2005),
http://dx.doi.org/10.1016/j.sse.2004.11.016
[5] R.M. de Moraes and S.M. Anlage, Unified model and reverse
recovery nonlinearities of the driven diode resonator, Phys. Rev. E
68, 026201-1–9 (2003),
http://dx.doi.org/10.1103/PhysRevE.68.026201
[6] K. Bauer, H.-J. Schulze, and F.-J. Niedernostheide, Diffusion
processes for high-power devices, in: Proceedings of the 1st
International Conference on Diffusion in Solids and Liquids
DSL-2005 (Univ. of Aveiro, Aveiro, 2005) pp. 17–24,
[PDF]
[7] S.M. Kang, T.J. Eom, S.J. Kim, H.W. Kim, J.Y. Cho, and Ch. Lee,
Reverse recovery characteristics and defect distribution in an
electron-irradiated silicon p–n junction diode, Mater. Chem. Phys. 84,
187–191 (2004),
http://dx.doi.org/10.1016/j.matchemphys.2003.11.030
[8] J. Vobecky, P. Hazdra, N. Galster, and E. Carroll, Freewheeling
diodes with improved reverse recovery by combined electron and
proton irradiation, in: Proceedings of the 8th PEMC'98
(Prague, 1998) pp. 1–4,
[PDF]
[9] E. Gaubas, Transient absorption techniques for investigation of
recombination properties in semiconductor materials, Lithuanian J.
Phys. 43, 145–165 (2003)
[10] E. Gaubas and J. Vanhellemont, Comparative study of carrier
lifetime dependence on dopant concentration in silicon and
germanium, J. Electrochem. Soc. 154, H231–H238 (2007),
http://dx.doi.org/10.1149/1.2429031
[11] E. Gaubas and J. Vanhellemont, Microwave and infra red light
absorption studies of carrier lifetime in silicon and germanium,
Solid State Phenom. 131–133, 149–154 (2008),
http://dx.doi.org/10.4028/www.scientific.net/SSP.131-133.149
[12] E. Gaubas, A. Uleckas, and J. Višniakov, Dose dependent
variations of carrier recombination in silicon irradiated by high
energy electrons, Lithuanian J. Phys. 47, 457–460 (2007),
http://dx.doi.org/10.3952/lithjphys.47409
[13] E. Gaubas, A. Kadys, A. Uleckas, and J. Vaitkus, Investigation
of carrier recombination in Si heavily irradiated by neutrons, Acta
Phys. Pol. A 113, 837–840 (2008),
http://dx.doi.org/10.12693/APhysPolA.113.829
[14] S.J. Watts, Radiation induced defects in silicon, in: High
Purity Silicon V, Proceedings of the 194th Meeting of
Electrochemical Society, Vol. 98-13, eds. C.L. Claeys, P.
Rai-Chaudhury, M. Watanabe, P. Stallhofer, and H.J. Dawson (The
Electorchem. Soc., Pennington, NJ, 1998), pp. 355–370,
https://www.amazon.co.uk/High-Purity-Silicon-Proceeding-98-13/dp/1566772079/
[15] S.J. Watts, J. Matheson, I.H. Hopkins-Bond, A. Holmes-Siedle,
A. Mohammadzadeh, and R. Pace, A new model for
generation-recombination in silicon depletion regions after neutron
irradiation, IEEE Trans. Nucl. Sci. 43, 2587–2594 (1996),
http://dx.doi.org/10.1109/23.556840
[16] K. Gill, G. Hall, and B. MacEvoy, Bulk damage effects in
irradiated silicon detectors due to clustered divacancies, J. Appl.
Phys. 82, 126–136 (1997),
http://dx.doi.org/10.1063/1.365790