[PDF]
http://dx.doi.org/10.3952/lithjphys.48204
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 155–162 (2008)
MANIFESTATION OF THE OPTICAL
STARK EFFECT IN DIFFERENTIAL TRANSMISSION SPECTRA
A. Savickas and E. Gaižauskas
Department of Quantum Electronics, Vilnius University,
Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: aurimas.savickas@ff.vu.lt
Received 14 February 2008; revised
3 April 2008; accepted 9 June 2008
The two-level quantum system is
applied in theoretical modelling of the angle-resolved
differential absorption spectra induced by the strong
near-resonant laser field in quantum dots. The simulations of
induced polarization waves at appropriate directions have been
performed by means of the density matrix formalism, without using
perturbation theory. An interpretation of the differential spectra
is provided referring to representation of the dressed states,
with their energies experiencing Stark shifts due to the action of
the laser field. The feasibility of the light and matter
interaction strength characterization via observed Mollow spectrum
at the different (from the probe beam) direction is demonstrated.
Keywords: femtosecond spectroscopy,
differential spectra, quantum dots, Stark effect, four-wave
mixing, Mollow spectrum, dressed states
PACS: 78.20.Jq, 78.47.+p, 78.67.Hc
ŠTARKO EFEKTO APRAIŠKOS
SKIRTUMINĖS SUGERTIES SPEKTRUOSE
A. Savickas, E. Gaižauskas
Vilniaus universitetas, Vilnius, Lietuva
Teoriškai tiriami skirtuminiai kvantinių taškų,
pasižyminčių stipria sąveika su rezonansiniu elektromagnetiniu
(EM) lauku, skirtuminės sugerties spektrai. Modeliuojama dviejų
lygmenų kvantinė sistema, esanti nedideliu kampu susikertančių
dviejų (kaupinančio ir zonduojančio) lazerinių pluoštų lauke.
Kvantinėje sistemoje skirtingomis kryptimis indukuota
poliarizacija įvertinta iš Liuvilio (Liouville) lygties tankio
matricai ir skaičiuojama netaikant įprastų žadinimo ir zondavimo
spektroskopijai trikdžių teorijos artinių. Apskaičiuoti
skirtuminiai spektrai interpretuojami remiantis žinomu apvilktųjų
būsenų (angl. dressed states) modeliu, aprašančiu energijos
lygmenų poslinkius stipriame EM lauke. Parodyta, kad EM lauko ir
kvantinės sistemos sąveikos stiprį charakterizuojantį spektrą
(Mollow tripletą) patogiausia stebėti ne zonduojančio pluošto
kryptimi.
References / Nuorodos
[1] E. Biolatti, R.C. Iotti, P. Zanardi, and F. Rossi, Quantum
information processing with semiconductor macroatoms, Phys. Rev.
Lett. 85(26), 5647–5650 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.5647
[2] P. Chen, C. Piermarocchi, and L.J. Sham, Control of exciton
dynamics in nanodots for quantum operations, Phys. Rev. Lett. 87(6),
067401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.067401
[3] A. Nazir, B.W. Lovett, and G.A.D. Briggs, Creating excitonic
entanglement in quantum dots through the optical Stark effect, Phys.
Rev. A 70(5), 052301 (2004),
http://dx.doi.org/10.1103/PhysRevA.70.052301
[4] A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink,
and H. Morkoc, "Dressed excitons" in a multiple-quantum-well
structure: Evidence for an optical Stark effect with femtosecond
response time, Phys. Rev. Lett. 56(25), 2748–2751 (1986),
http://dx.doi.org/10.1103/PhysRevLett.56.2748
[5] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa,
Observation of the coupled exciton-photon mode splitting in a
semiconductor quantum microcavity, Phys. Rev. Lett. 69(23),
3314–3317 (1992),
http://dx.doi.org/10.1103/PhysRevLett.69.3314
[6] H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando,
Exciton Rabi oscillation in a single quantum dot, Phys. Rev. Lett. 87(24),
246401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.246401
[7] T.H. Stievater, Xiaoqin Li, D.G. Steel, D. Gammon, D.S. Katzer,
D. Park, C. Piermarocchi, and L.J. Sham, Rabi oscillations of
excitons in single quantum dots, Phys. Rev. Lett. 87(13),
133603 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.133603
[8] M. Chachišvilis, H. Fidder, and V. Sundström, Electronic
coherence in pseudo two-collour pump-probe spectroscopy, Chem. Phys.
Lett. 234(1–3), 141–150 (1995),
http://dx.doi.org/10.1016/0009-2614(95)00041-2
[9] P. Hamm, Coherent effects in femtosecond infrared spectroscopy,
Chem. Phys. 200(3), 415–429 (1995),
http://dx.doi.org/10.1016/0301-0104(95)00262-6
[10] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon
Interactions: Basic Processes and Applications (Wiley, New
York, 1992),
https://www.amazon.com/Atom-Photon-Interactions-Applications-Cohen-Tannoudji-Dupont-Roc/dp/B015X518NY/
[11] E. Gaižauskas and L. Valkūnas, Coherent transients of
pump-probe spectroscopy in two-level approximation, Opt. Commun. 109(1–2),
75–80 (1994),
http://dx.doi.org/10.1016/0030-4018(94)90741-2
[12] L. Seider, G. Stock, and W. Domcke, Nonpertubative approach to
femtosecond pump-probe spectroscopy: General theory and application
to multidimensional nonadiabatic photoisomerization processes, J.
Chem. Phys. 103(10), 3998–4011 (1995),
http://dx.doi.org/10.1063/1.469586
[13] B. Wolfseder, L. Seider, G. Stock, and W. Domcke, Femtosecond
pump-probe spectroscopy of electron transfer systems: A
nonpertubative approach, Chem. Phys. 217(2–3), 275–287
(1997),
http://dx.doi.org/10.1016/S0301-0104(97)00046-3
[14] E. Gaižauskas and L. Valkūnas, Femtosecond four-wave mixing
spectroscopy of molecular aggregates, J. Phys. Chem. B 101(37),
7321–7326 (1997),
http://dx.doi.org/10.1021/jp9639713
[15] E. Gaižauskas, A. Beržanskis, and K.-H. Feller, Effects of
non-Markovian relaxation in the femtosecond differential absorption
spectroscopy, Chem. Phys. 235(1–3), 123–130 (1998),
http://dx.doi.org/10.1016/S0301-0104(98)00106-2
[16] J.-S. Park and T. Joo, Coherent interactions in femtosecond
transient grating, J. Chem. Phys. 120(11), 5269–5274 (2004),
http://dx.doi.org/10.1063/1.1647534
[17] C. Cohen-Tannoudji and S. Reynaud, Dressed-atom description of
resonance fluorescence and absorption spectra of a multilevel atom
in an intense laser beam, J. Phys. B 10(3), 345–363 (1977),
http://dx.doi.org/10.1088/0022-3700/10/3/005
[18] R. Boyd, Nonlinear Optics (Academic Press, San Diego,
USA, 1992),
https://www.amazon.co.uk/Nonlinear-Optics-Boyd-Robert-Hardcover/dp/B010WF0DO0/
[19] B.R. Mollow, Stimulated emission and absorption near resonance
for driven systems, Phys. Rev. A 5(5), 2217–2222 (1972),
http://dx.doi.org/10.1103/PhysRevA.5.2217
[20] F.Y. Wu, S. Ezekiel, M. Ducloy, and B.R. Mollow, Observation of
amplification in a strongly driven two-level atomic system at
optical frequencies, Phys. Rev. Lett. 38(19), 1077–1080
(1977),
http://dx.doi.org/10.1103/PhysRevLett.38.1077
[21] D.D. Yavuz, All-optical femtosecond switch using two-photon
absorption, Phys. Rev. A 74(5), 053804 (2006),
http://dx.doi.org/10.1103/PhysRevA.74.053804