[PDF]    http://dx.doi.org/10.3952/lithjphys.48204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 155–162 (2008)


MANIFESTATION OF THE OPTICAL STARK EFFECT IN DIFFERENTIAL TRANSMISSION SPECTRA
A. Savickas and E. Gaižauskas
Department of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: aurimas.savickas@ff.vu.lt

Received 14 February 2008; revised 3 April 2008; accepted 9 June 2008

The two-level quantum system is applied in theoretical modelling of the angle-resolved differential absorption spectra induced by the strong near-resonant laser field in quantum dots. The simulations of induced polarization waves at appropriate directions have been performed by means of the density matrix formalism, without using perturbation theory. An interpretation of the differential spectra is provided referring to representation of the dressed states, with their energies experiencing Stark shifts due to the action of the laser field. The feasibility of the light and matter interaction strength characterization via observed Mollow spectrum at the different (from the probe beam) direction is demonstrated.
Keywords: femtosecond spectroscopy, differential spectra, quantum dots, Stark effect, four-wave mixing, Mollow spectrum, dressed states
PACS: 78.20.Jq, 78.47.+p, 78.67.Hc


ŠTARKO EFEKTO APRAIŠKOS SKIRTUMINĖS SUGERTIES SPEKTRUOSE
A. Savickas, E. Gaižauskas
Vilniaus universitetas, Vilnius, Lietuva

Teoriškai tiriami skirtuminiai kvantinių taškų, pasižyminčių stipria sąveika su rezonansiniu elektromagnetiniu (EM) lauku, skirtuminės sugerties spektrai. Modeliuojama dviejų lygmenų kvantinė sistema, esanti nedideliu kampu susikertančių dviejų (kaupinančio ir zonduojančio) lazerinių pluoštų lauke. Kvantinėje sistemoje skirtingomis kryptimis indukuota poliarizacija įvertinta iš Liuvilio (Liouville) lygties tankio matricai ir skaičiuojama netaikant įprastų žadinimo ir zondavimo spektroskopijai trikdžių teorijos artinių. Apskaičiuoti skirtuminiai spektrai interpretuojami remiantis žinomu apvilktųjų būsenų (angl. dressed states) modeliu, aprašančiu energijos lygmenų poslinkius stipriame EM lauke. Parodyta, kad EM lauko ir kvantinės sistemos sąveikos stiprį charakterizuojantį spektrą (Mollow tripletą) patogiausia stebėti ne zonduojančio pluošto kryptimi.


References / Nuorodos


[1] E. Biolatti, R.C. Iotti, P. Zanardi, and F. Rossi, Quantum information processing with semiconductor macroatoms, Phys. Rev. Lett. 85(26), 5647–5650 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.5647
[2] P. Chen, C. Piermarocchi, and L.J. Sham, Control of exciton dynamics in nanodots for quantum operations, Phys. Rev. Lett. 87(6), 067401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.067401
[3] A. Nazir, B.W. Lovett, and G.A.D. Briggs, Creating excitonic entanglement in quantum dots through the optical Stark effect, Phys. Rev. A 70(5), 052301 (2004),
http://dx.doi.org/10.1103/PhysRevA.70.052301
[4] A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, and H. Morkoc, "Dressed excitons" in a multiple-quantum-well structure: Evidence for an optical Stark effect with femtosecond response time, Phys. Rev. Lett. 56(25), 2748–2751 (1986),
http://dx.doi.org/10.1103/PhysRevLett.56.2748
[5] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69(23), 3314–3317 (1992),
http://dx.doi.org/10.1103/PhysRevLett.69.3314
[6] H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, Exciton Rabi oscillation in a single quantum dot, Phys. Rev. Lett. 87(24), 246401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.246401
[7] T.H. Stievater, Xiaoqin Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, and L.J. Sham, Rabi oscillations of excitons in single quantum dots, Phys. Rev. Lett. 87(13), 133603 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.133603
[8] M. Chachišvilis, H. Fidder, and V. Sundström, Electronic coherence in pseudo two-collour pump-probe spectroscopy, Chem. Phys. Lett. 234(1–3), 141–150 (1995),
http://dx.doi.org/10.1016/0009-2614(95)00041-2
[9] P. Hamm, Coherent effects in femtosecond infrared spectroscopy, Chem. Phys. 200(3), 415–429 (1995),
http://dx.doi.org/10.1016/0301-0104(95)00262-6
[10] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992),
https://www.amazon.com/Atom-Photon-Interactions-Applications-Cohen-Tannoudji-Dupont-Roc/dp/B015X518NY/
[11] E. Gaižauskas and L. Valkūnas, Coherent transients of pump-probe spectroscopy in two-level approximation, Opt. Commun. 109(1–2), 75–80 (1994),
http://dx.doi.org/10.1016/0030-4018(94)90741-2
[12] L. Seider, G. Stock, and W. Domcke, Nonpertubative approach to femtosecond pump-probe spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes, J. Chem. Phys. 103(10), 3998–4011 (1995),
http://dx.doi.org/10.1063/1.469586
[13] B. Wolfseder, L. Seider, G. Stock, and W. Domcke, Femtosecond pump-probe spectroscopy of electron transfer systems: A nonpertubative approach, Chem. Phys. 217(2–3), 275–287 (1997),
http://dx.doi.org/10.1016/S0301-0104(97)00046-3
[14] E. Gaižauskas and L. Valkūnas, Femtosecond four-wave mixing spectroscopy of molecular aggregates, J. Phys. Chem. B 101(37), 7321–7326 (1997),
http://dx.doi.org/10.1021/jp9639713
[15] E. Gaižauskas, A. Beržanskis, and K.-H. Feller, Effects of non-Markovian relaxation in the femtosecond differential absorption spectroscopy, Chem. Phys. 235(1–3), 123–130 (1998),
http://dx.doi.org/10.1016/S0301-0104(98)00106-2
[16] J.-S. Park and T. Joo, Coherent interactions in femtosecond transient grating, J. Chem. Phys. 120(11), 5269–5274 (2004),
http://dx.doi.org/10.1063/1.1647534
[17] C. Cohen-Tannoudji and S. Reynaud, Dressed-atom description of resonance fluorescence and absorption spectra of a multilevel atom in an intense laser beam, J. Phys. B 10(3), 345–363 (1977),
http://dx.doi.org/10.1088/0022-3700/10/3/005
[18] R. Boyd, Nonlinear Optics (Academic Press, San Diego, USA, 1992),
https://www.amazon.co.uk/Nonlinear-Optics-Boyd-Robert-Hardcover/dp/B010WF0DO0/
[19] B.R. Mollow, Stimulated emission and absorption near resonance for driven systems, Phys. Rev. A 5(5), 2217–2222 (1972),
http://dx.doi.org/10.1103/PhysRevA.5.2217
[20] F.Y. Wu, S. Ezekiel, M. Ducloy, and B.R. Mollow, Observation of amplification in a strongly driven two-level atomic system at optical frequencies, Phys. Rev. Lett. 38(19), 1077–1080 (1977),
http://dx.doi.org/10.1103/PhysRevLett.38.1077
[21] D.D. Yavuz, All-optical femtosecond switch using two-photon absorption, Phys. Rev. A 74(5), 053804 (2006),
http://dx.doi.org/10.1103/PhysRevA.74.053804