[PDF]
http://dx.doi.org/10.3952/lithjphys.48206
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 121–126 (2008)
ANALYTIC SOLUTION FOR THE
REDUCED CROSS-SECTION AND ITS DERIVATIVES AT LOW x BASED
ON GLUON AND STRUCTURE FUNCTION EXPONENTS
G.R. Boroun
Physics Department, Razi University, Kermanshah 67149, Iran
E-mail: boroun@razi.ac.ir, grboroun@gmail.com
Received 29 December 2007; revised
2 March 2008; accepted 9 June 2008
Analytic solutions for the reduced
cross-section and its derivatives with respect to lny are
presented at the low-x limit. The DGLAP evolution equations
for singlet and gluon structure function based on Regge-like
behaviour of the gluon distribution and the structure function at
this limit are solved. We calculated numerically and compared our
results with the HERA experiment H1 data at small x. All
results can be consistently described within the framework of
perturbative QCD.
Keywords: reduced cross-section, DGLAP
evolution equation, small-x physics, Regge-like behaviour
PACS: 13.60.Hb, 11.55.Jy
REDUKUOTOJO SKERSPJŪVIO IR JO
IŠVESTINIŲ SPRENDINYS NEDIDELĖMS x VERTĖMS, REMIANTIS
GLIUONŲ IR SANDAROS FUNKCIJŲ EKSPONENTĖMIS
G.R. Boroun
Razi universitetas, Kermanšachas, Iranas
Pateiktos analizinės redukuotojo skerspjūvio ir
jo išvestinių išraikos lny atžvilgiu, kai Bjorkeno
parametras x yra mažas. Išspręstos DGLAP evoliucinės
lygtys singletinei ir gliuonų sandaros funkcijai, grindžiamos
Redže tipo gliuonų pasiskirstymo ir sandaros funkcijos elgsena
šioje riboje. Skaitmeniškai gauti rezultatai palyginti su HERA
bandymo H1 duomenimis, kai x maži. Visus rezultatus galima
nuosekliai aprašyti naudojant perturbacinę kvantinę
chromodinamiką.
References / Nuorodos
[1] R.G. Roberts, The Structure of the Proton (Cambridge
University Press, Cambridge, 1990),
http://www.cambridge.org/academic/subjects/physics/theoretical-physics-and-mathematical-physics/structure-proton-deep-inelastic-scattering
[2] N. Gogitidze, Determination of the longitudinal structure
function FL at HERA, J. Phys. G 28,
751 (2002),
http://dx.doi.org/10.1088/0954-3899/28/5/303
[3] N. Ghahramany and G.R. Boroun, Extraction of the structure
function F2(x,Q2) at low
x from the cross-section derivative, Phys. Lett. B 528,
239 (2002),
http://dx.doi.org/10.1016/S0370-2693(02)01227-3
[4] A.M. Cooper-Sarkar, R.C.E. Devenish, and A. De Roeck, Structure
functions of the nucleon and their interpretation, Int. J. Mod.
Phys. A 113, 3385 (1998),
http://dx.doi.org/10.1142/S0217751X98001670
[5] A.W. Thomas and W. Weise, The Structure of the Nucleon
(Wiley-VCH, Berlin, 2001),
http://dx.doi.org/10.1002/352760314X
[6] P.D.B. Collins, An Introduction to Regge Theory and
High-Energy Physics (Cambridge University Press, Cambridge,
1997),
http://www.cambridge.org/academic/subjects/physics/theoretical-physics-and-mathematical-physics/introduction-regge-theory-and-high-energy-physics
[7] A. Capella et al., Structure function and low x, Phys.
Lett. B 337, 358 (1994),
http://dx.doi.org/10.1016/0370-2693(94)90988-1
[8] L. Csernai et al., From Regge behavior to DGLAP evolution, Eur.
Phys. J. C 24, 205 (2002),
http://dx.doi.org/10.1007/s100520200931
[9a] Yu.L. Dokshitzer, Calculation of structure functions of
deep-inelastic scattering and e+e–
annihilation by perturbation theory in quantum chromodynamics, Sov.
Phys. JETP 46, 641 (1977),
http://www.jetp.ac.ru/cgi-bin/e/index/e/46/4/p641?a=list
[9b] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298
(1977),
http://dx.doi.org/10.1016/0550-3213(77)90384-4
[9c] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15,
438 (1972)
[10] P. Desgrolard, A. Lengyel, and E. Martynov, Pomeron effective
intercept-logarithmic derivatives of F2(x,Q2)
in DIS and Regge models, J. High Energy Phys. 02, 029 (2002)
[11] J. Gayler, on behalf of the H1 Collaboration, The rise of the
proton structure function F2 towards low x,
Acta Phys. Pol. B 33, 2841 (2002),
[PDF]
[12a] G. Soyez, Global QCD fit from Q2 = 0 to Q2
= 30000 GeV2 with Regge compatible initial condition,
Phys. Rev. D 71, 076001 (2005),
http://dx.doi.org/10.1103/PhysRevD.71.076001
[12b] F. Barreiro, C. López, and F. J. Ynduráin, NLO predictions for
the growth of F2 at small x and
comparison with experimental data, Z. Phys. C 72, 561
(1996),
http://dx.doi.org/10.1007/s002880050279
[13] The H1 Collaboration, C. Adloff et al., On the rise of the
proton structure function F2 towards low x,
Phys. Lett. B 520, 183 (2001),
http://dx.doi.org/10.1016/S0370-2693(01)01074-7
[14] A.M. Cooper-Sarkar and R.C.E. Devenish, The rise and fall of F2
at low x, Acta Phys. Pol. B 34, 2911 (2003),
[PDF]
[15a] R.K. Ellis, Z. Kunszt, and E.M. Levin, The evolution of parton
distributions at small x, Nucl. Phys. B 420, 517
(1994),
http://dx.doi.org/10.1016/0550-3213(94)90076-0
[15b] R.K. Ellis, W.J. Stirling, and B.R. Webber, QCD and
Collider Physics (Cambridge University Press, Cambridge,
1996),
http://dx.doi.org/10.1017/CBO9780511628788
[16] G.R. Boroun and B. Rezaie, Approximate method for calculating
the exponent of the gluon distribution, λg,
and the exponent of the structure function, λS,
at low x, Phys. At. Nucl. 71, 1077 (2008),
http://dx.doi.org/10.1134/S1063778808060100
[17] The H1 Collaboration, C. Adloff et al., Deep inelastic
inclusive ep scattering at low x and a determination
of αs, Eur. Phys. J. C 21, 33
(2001),
http://dx.doi.org/10.1007/s100520100720