[PDF]
http://dx.doi.org/10.3952/lithjphys.48210
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 183–194 (2008)
BLACK CARBON AEROSOL AT THE
BACKGROUND SITE IN THE COASTAL ZONE OF THE BALTIC SEA
J. Andriejauskienėa, V. Ulevičiusa, M.
Bizjakb, N. Špirkauskaitėa, and S.
Byčenkienėa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: jelena.andriejauskiene@email.lt
bUniversity of Ljubljana, Kongresni trg. 12, SI-1000
Ljubljana, Slovenia
Received 10 March 2008; accepted 9
June 2008
Carbon particulate matter
constitutes an important portion of the atmospheric aerosol and
directly participates in the formation of the Earth’s radiation
balance by influencing the global and regional climate. Continuous
data (March, April, 2002) of 20-minute concentrations of airborne
black carbon (BC) particles at the Preila Environmental Pollution
Research Station (55◦20′ N, 21◦00′ E) have
been used for the investigation of diurnal and weekday variation
as well as the different air mass influence on BC transport. The
measurement of BC mass concentration with the Aethalometer™, Model
AE40 Spectrum, manufactured by Optotek, Slovenia was carried out.
The origin of an air mass was detected by using air mass backward
trajectories calculated by the Hybrid Single-Particle Lagrangian
Integrated Trajectories (HYSPLIT) model. Approximately 73% of BC
measured concentrations were found in the range of a low value
mode centered at ~0–1000 ng m–3. The remaining
concentrations were in a high-concentration mode at ~1000–3000 ng
m–3, probably indicating a direct impact of emissions
from combustion activities. BC concentration in various air masses
over that period varied from the average value of approximately
140 ng m–3 to the maximum value of 2410 ng m–3.
The highest BC concentrations were associated with the prevailing
southern transport air masses. Simultaneously, the daily
concentration variation of black carbon and SO2, NO2,
O3 was measured and analysed. Total aerosol
concentrations and size distributions were measured as well. The
aerosol size distribution was plotted as contour plots for each
day (as a function of time). Most studies were focused on the BC
aerosol particle size distribution and modal aerosol
concentration. For each event, the growth rate was calculated
graphically from the contour plots (“banana–plots”) and was
analysed for the possible nucleation events. Some aerosol
measurements were carried out at an urban site in order to
evaluate the BC concentration of the freshly emitted traffic
aerosols.
Keywords: black carbon aerosol, mass
concentration, size distribution, variations, air mass backward
trajectories
PACS: 92.60.Mt, 92.10.Lq, 92.20.Bk
JUODOSIOS ANGLIES AEROZOLIO
DALELĖS FONINĖJE VIETOVĖJE BALTIJOS JŪROS PAKRANTĖJE
J. Andriejauskienėa, V. Ulevičiusa, M.
Bizjakb, N. Špirkauskaitėa, S. Byčenkienėa
aFizikos institutas, Vilnius, Lietuva
bLiublijanos universitetas, Liublijana,
Slovėnija
Atmosferoje aerozolio dalelės, sudarytos iš
juodosios anglies (dar vadinamos elementine anglimi) ar organinės
anglies, tiesiogiai veikia Žemės energinį balansą, sugerdamos ar
atspindėdamos Saulės spinduliuotę ir tuo pačiu veikdamos tiek
globalinį, tiek regioninį klimatą. Pateikti juodosios anglies
aerozolio dalelių koncentracijų kaitos 2002 m. kovo–balandžio
mėnesiais Preilos aplinkos užterštumo tyrimų stotyje tyrimai.
Juodosios anglies aerozolio dalelių koncentracijos matavimai buvo
atliekami etalometru A-40 Spectrum (Slovėnija). Tuo pačiu metu
optiniu dalelių skaitikliu (LAS-15A, Fizikos institutas, Lietuva)
ir diferencinio dalelių judrumo skaitikliu (ELAS-5Mc, Fizikos
institutas, Lietuva) matuota aerozolio dalelių (0,3–10 µm)
skaitinė koncentracija ir jų dydžių (10–200 nm) spektras. Taip pat
buvo matuotos NO2, SO2 ir O3
koncentracijos. Taikant HYSPLIT-4 modelio metodiką skaičiuotos 24
val. atgalinės oro masių pernašos į Preilos stotį trajektorijos,
nustatant oro masių priešistorę. Apie 73 % išmatuotų juodosios
anglies aerozolio dalelių koncentracijų tiriamuoju laikotarpiu
buvo 0–1000 ng m–3 ribose ir tik 27 % buvo
didesnės – 1000–3000 ng m–3. Nustatyta, kad
didžiausia juodosios anglies aerozolio dalelių koncentracija (2410
ng m–3) Preiloje buvo vyraujant pietinių ir
pietvakarinių krypčių oro masių pernašai. Mažiausia jų
koncentracija (140 ng m–3) buvo, kai oro
masės slinko nuo Atlanto vandenyno per Baltijos jūrą ar virš
Skandinavijos (Š ir ŠV krypčių). Analizė parodė, kad juodosios
anglies aerozolio koncentracija buvo didesnė balandžio (960 ng m–3)
nei kovo (720 ng m–3) mėn. Paros metu
didesnės koncentracijos stebėtos 8–11 ir 19–22 val. Nustatytas
teigiamas koreliacijos ryšys tarp juodosios anglies ir SO2
bei NO2 koncentracijų kaitos, atitinkamai 0,44 ir 0,43,
ir neigiamas su ozonu kovo (–0,30) ir balandžio (–0,55) mėn.
Juodosios anglies aerozolio dalelių dydžių pasiskirstymo analizė
ir foninėje stotyje (Preila), ir Vilniaus–Klaipėdos magistralėje
(„švieži“ transporto kuro produktų išmetimai) parodė, kad
dominuoja mažiausių dydžių frakcijos.
References / Nuorodos
[1] M.Z. Jacobson, Strong radiative heating due to the mixing state
of black carbon in atmospheric aerosols, Nature 409(6821),
695–697 (2001),
http://dx.doi.org/10.1038/35055518
[2] A. Kirkevag, T. Iversen, and A. Dahlback, On radiative effects
of black carbon and sulphate aerosols, Atmos. Environ. 33,
2621–2635 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00309-4
[3] G.H. Andrew and G.R. Cass, Source contributions to atmospheric
fine carbon particle concentrations, Atmos. Environ. 32,
3805–3825 (1998),
http://dx.doi.org/10.1016/S1352-2310(97)00446-9
[4] A. Molnar, E. Meszaros, H.C. Hansson, H. Karlsson, A. Gelencser,
GY. Kiss, and Z. Krivacsy, The importance of organic and elemental
carbon in the fine atmospheric aerosol particles, Atmos. Environ. 33,
2745–2750 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00359-8
[5] R. Hitzenberger and S. Tohno, Comparison of black carbon (BC)
aerosols in two urban areas – concentrations and size distributions,
Atmos. Environ. 35, 2153–2167 (2001),
http://dx.doi.org/10.1016/S1352-2310(00)00480-5
[6] M. Schaap, H.A.C. Denier Van Der Gon, F.J. Dentener, A.J.H.
Visschedijk, M. Van Loon, H.M. ten Brink, J.-P. Putaud, B.
Guillaume, C. Liousse, and P.J.H. Builtjes, Anthropogenic black
carbon and fine aerosol distribution over Europe, J. Geophys. Res. 109,
D18207,
http://dx.doi.org/10.1029/2003JD004330
[7] J.N. Pitz, Formation and fate of gaseous and particulate
mutagens and carcinogens in real and simulated atmospheres, Environ.
Health Perspectives 47, 115–140 (1983),
http://dx.doi.org/10.1289/ehp.8347115
[8] S. Kamm, O. Mohler, K.H. Naumann, H. Saathoff, and U. Schurath,
The heterogeneous reaction of ozone with soot aerosol, Atmos.
Environ. 33, 4651–4661 (1999),
http://dx.doi.org/10.1016/S1352-2310(99)00235-6
[9] L. Laakso, T. Hussein, P. Aarnio, M. Komppula, V. Hiltunen, Y.
Viisanen, and M. Kulmala, Diurnal and annual characteristics of
particle mass and number concentrations in urban, rural and Arctic
environments in Finland, Atmos. Environ. 37, 2629–2641
(2003),
http://dx.doi.org/10.1016/S1352-2310(03)00206-1
[10] F. Funasaka, T. Miyazaki, T. Kawaraya, K. Tsuruho, and T.
Mizuno, Characteristics of particulates and gaseous pollutants in a
highway tunnel, Environ. Pollut. 102, 171–176 (1998),
http://dx.doi.org/10.1016/S0269-7491(98)00101-8
[11] J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change (Wiley, New
York, 1998),
https://www.amazon.co.uk/Atmospheric-Chemistry-Physics-Pollution-Climate/dp/0471178160/
[12] L.M. Castro, C.A. Pio, R.M. Harrison, and D.J.T. Smith,
Carbonaceous aerosol in urban and rural European atmospheres:
Estimation of secondary organic carbon concentrations, Atmos.
Environ. 33, 2771–2781 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00331-8
[13] Z. Krivacsy, A. Hoffer, Zs. Sarvari, D. Temesi, U.
Baltensperger, S. Nyeki, E. Weingartner, S. Kleefeld, and S.G.
Jennings, Role of organic and black carbon in the chemical
composition of atmospheric aerosol at European background sites,
Atmos. Environ. 35, 6231–6244 (2001),
http://dx.doi.org/10.1016/S1352-2310(01)00467-8
[14] S. Koga, T. Maeda, and N. Kaneyasu, Source contributions to
black carbon mass fractions in aerosol particles over the
northwestern Pacific, Atmos. Environ. 42, 800–814 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2007.09.052
[15] D. Šopauskienė and D. Jasinevičienė, Time series and trends in
atmospheric concentrations of sulphur and nitrogen dioxides in
Lithuania in 1981–2001, Environ. Chem. Phys. 26, 100–108
(2004)
[16] R.W. Bergstrom, P.B. Russell, and P. Hignett, The wavelenght
dependence of black carbon particles: Predictions and results from
the TARFOX experiment and implications for the aerosol single
scattering albedo, J. Atmos. Sci. 59, 567–577 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2
[17] J. Sandradewi, A.S.H. Prevot, E. Weingartner, R. Schmidhauser,
M. Gysel, and U. Baltensperger, A study of wood burning and traffic
aerosols in an Alpine valley using a multi-wavelength Aethalometer,
Atmos. Environ. 42, 101–112 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2007.09.034
[18] V. Ulevičius, G. Mordas, and K. Plauškaitė, Nucleation events
at the Preila environmental research station, Environ. Chem. Phys. 24,
38–44 (2002)
[19] R. Girgždienė, D. Šopauskienė, and A. Girgždys, The change of O3,
SO2 and NO2 concentrations in Lithuania,
Environ. Sci. Pollut. Res. 9, Supplement 1, 3–7 (2002),
http://dx.doi.org/10.1007/BF02987418
[20] D. Šopauskienė, D. Jasinevičienė, and S. Stapčinskaitė, The
effect of changes in European anthropogenic emissions on the
concentrations of sulphur and nitrogen components in air and
precipitation in Lithuania, Water, Air Soil Pollut. 130,
517–522 (2001),
http://dx.doi.org/10.1023/A:1013826411072
[21] Real-time scientific measurements for over 20 years,
http://www.mageesci.com/
[22] W. Fendel, D. Matter, H. Bursther, and A. Schmidt-Ott,
Interaction between carbon or iron aerosol particles and ozone,
Atmos. Environ. 29, 963–973 (1995),
http://dx.doi.org/10.1016/1352-2310(95)00038-z
[23] NOAA,
http://www.arl.noaa.gov/ready.html
[24] A. Milukaitė, K. Kvietkus, and I. Rimšelytė, Organic and
elemental carbon in coastal aerosol of the Baltic Sea, Lithuanian J.
Phys. 47, 203–210 (2007),
http://dx.doi.org/10.3952/lithjphys.47205
[25] M. Kulmala, A. Toivonen, J.M. Mäkelä, and A. Laaksonen,
Analysis and growth of the nucleation mode particles observed in
Boreal forest, Tellus 50B, 449–462 (1998),
http://dx.doi.org/10.1034/j.1600-0889.1998.t01-4-00004.x
[26] K. Plauškaitė, R. Kazlauskaitė, J. Andriejauskienė, and V.
Ulevičius, Parametrization of new particle formation and growth at
the Preila station, Lithuanian J. Phys. 45, 139–147 (2005),
http://dx.doi.org/10.3952/lithjphys.45210
[27] F. Parungo, J.F. Boatman, H. Sievering, S.W. Wilkison, B.B.
Hicks, Trends in global marine cloudiness and anthropogenic sulphur,
J. Climate 7, 434–440 (1994),
http://dx.doi.org/10.1175/1520-0442(1994)007<0434:TIGMCA>2.0.CO;2
[28] H. Saathoff, K.H. Naumann, M. Schnaiter, W. Schock, E.
Weingartner, U. Baltensperger, L. Kramer, Z. Bozoki, U. Poschl, R.
Niessner, and U. Schurath, Carbon mass determinations during the
AIDA soot aerosol campaign 1999, Aerosol Sci. 34, 1399–1420
(2003),
http://dx.doi.org/10.1016/S0021-8502(03)00365-3