[PDF]    http://dx.doi.org/10.3952/lithjphys.48210

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 183–194 (2008)


BLACK CARBON AEROSOL AT THE BACKGROUND SITE IN THE COASTAL ZONE OF THE BALTIC SEA
J. Andriejauskienėa, V. Ulevičiusa, M. Bizjakb, N. Špirkauskaitėa, and S. Byčenkienėa
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: jelena.andriejauskiene@email.lt
bUniversity of Ljubljana, Kongresni trg. 12, SI-1000 Ljubljana, Slovenia

Received 10 March 2008; accepted 9 June 2008

Carbon particulate matter constitutes an important portion of the atmospheric aerosol and directly participates in the formation of the Earth’s radiation balance by influencing the global and regional climate. Continuous data (March, April, 2002) of 20-minute concentrations of airborne black carbon (BC) particles at the Preila Environmental Pollution Research Station (5520′ N, 2100′ E) have been used for the investigation of diurnal and weekday variation as well as the different air mass influence on BC transport. The measurement of BC mass concentration with the Aethalometer™, Model AE40 Spectrum, manufactured by Optotek, Slovenia was carried out. The origin of an air mass was detected by using air mass backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model. Approximately 73% of BC measured concentrations were found in the range of a low value mode centered at ~0–1000 ng m–3. The remaining concentrations were in a high-concentration mode at ~1000–3000 ng m–3, probably indicating a direct impact of emissions from combustion activities. BC concentration in various air masses over that period varied from the average value of approximately 140 ng m–3 to the maximum value of 2410 ng m–3. The highest BC concentrations were associated with the prevailing southern transport air masses. Simultaneously, the daily concentration variation of black carbon and SO2, NO2, O3 was measured and analysed. Total aerosol concentrations and size distributions were measured as well. The aerosol size distribution was plotted as contour plots for each day (as a function of time). Most studies were focused on the BC aerosol particle size distribution and modal aerosol concentration. For each event, the growth rate was calculated graphically from the contour plots (“banana–plots”) and was analysed for the possible nucleation events. Some aerosol measurements were carried out at an urban site in order to evaluate the BC concentration of the freshly emitted traffic aerosols.
Keywords: black carbon aerosol, mass concentration, size distribution, variations, air mass backward trajectories
PACS: 92.60.Mt, 92.10.Lq, 92.20.Bk


JUODOSIOS ANGLIES AEROZOLIO DALELĖS FONINĖJE VIETOVĖJE BALTIJOS JŪROS PAKRANTĖJE
J. Andriejauskienėa, V. Ulevičiusa, M. Bizjakb, N. Špirkauskaitėa, S. Byčenkienėa
aFizikos institutas, Vilnius, Lietuva
bLiublijanos universitetas, Liublijana, Slovėnija

Atmosferoje aerozolio dalelės, sudarytos iš juodosios anglies (dar vadinamos elementine anglimi) ar organinės anglies, tiesiogiai veikia Žemės energinį balansą, sugerdamos ar atspindėdamos Saulės spinduliuotę ir tuo pačiu veikdamos tiek globalinį, tiek regioninį klimatą. Pateikti juodosios anglies aerozolio dalelių koncentracijų kaitos 2002 m. kovo–balandžio mėnesiais Preilos aplinkos užterštumo tyrimų stotyje tyrimai. Juodosios anglies aerozolio dalelių koncentracijos matavimai buvo atliekami etalometru A-40 Spectrum (Slovėnija). Tuo pačiu metu optiniu dalelių skaitikliu (LAS-15A, Fizikos institutas, Lietuva) ir diferencinio dalelių judrumo skaitikliu (ELAS-5Mc, Fizikos institutas, Lietuva) matuota aerozolio dalelių (0,3–10 µm) skaitinė koncentracija ir jų dydžių (10–200 nm) spektras. Taip pat buvo matuotos NO2, SO2 ir O3 koncentracijos. Taikant HYSPLIT-4 modelio metodiką skaičiuotos 24 val. atgalinės oro masių pernašos į Preilos stotį trajektorijos, nustatant oro masių priešistorę. Apie 73 % išmatuotų juodosios anglies aerozolio dalelių koncentracijų tiriamuoju laikotarpiu buvo 0–1000 ng m3 ribose ir tik 27 % buvo didesnės – 1000–3000 ng m3. Nustatyta, kad didžiausia juodosios anglies aerozolio dalelių koncentracija (2410 ng m3) Preiloje buvo vyraujant pietinių ir pietvakarinių krypčių oro masių pernašai. Mažiausia jų koncentracija (140 ng m3) buvo, kai oro masės slinko nuo Atlanto vandenyno per Baltijos jūrą ar virš Skandinavijos (Š ir ŠV krypčių). Analizė parodė, kad juodosios anglies aerozolio koncentracija buvo didesnė balandžio (960 ng m3) nei kovo (720 ng m3) mėn. Paros metu didesnės koncentracijos stebėtos 8–11 ir 19–22 val. Nustatytas teigiamas koreliacijos ryšys tarp juodosios anglies ir SO2 bei NO2 koncentracijų kaitos, atitinkamai 0,44 ir 0,43, ir neigiamas su ozonu kovo (–0,30) ir balandžio (–0,55) mėn. Juodosios anglies aerozolio dalelių dydžių pasiskirstymo analizė ir foninėje stotyje (Preila), ir Vilniaus–Klaipėdos magistralėje („švieži“ transporto kuro produktų išmetimai) parodė, kad dominuoja mažiausių dydžių frakcijos.


References / Nuorodos


[1] M.Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409(6821), 695–697 (2001),
http://dx.doi.org/10.1038/35055518
[2] A. Kirkevag, T. Iversen, and A. Dahlback, On radiative effects of black carbon and sulphate aerosols, Atmos. Environ. 33, 2621–2635 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00309-4
[3] G.H. Andrew and G.R. Cass, Source contributions to atmospheric fine carbon particle concentrations, Atmos. Environ. 32, 3805–3825 (1998),
http://dx.doi.org/10.1016/S1352-2310(97)00446-9
[4] A. Molnar, E. Meszaros, H.C. Hansson, H. Karlsson, A. Gelencser, GY. Kiss, and Z. Krivacsy, The importance of organic and elemental carbon in the fine atmospheric aerosol particles, Atmos. Environ. 33, 2745–2750 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00359-8
[5] R. Hitzenberger and S. Tohno, Comparison of black carbon (BC) aerosols in two urban areas – concentrations and size distributions, Atmos. Environ. 35, 2153–2167 (2001),
http://dx.doi.org/10.1016/S1352-2310(00)00480-5
[6] M. Schaap, H.A.C. Denier Van Der Gon, F.J. Dentener, A.J.H. Visschedijk, M. Van Loon, H.M. ten Brink, J.-P. Putaud, B. Guillaume, C. Liousse, and P.J.H. Builtjes, Anthropogenic black carbon and fine aerosol distribution over Europe, J. Geophys. Res. 109, D18207,
http://dx.doi.org/10.1029/2003JD004330
[7] J.N. Pitz, Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres, Environ. Health Perspectives 47, 115–140 (1983),
http://dx.doi.org/10.1289/ehp.8347115
[8] S. Kamm, O. Mohler, K.H. Naumann, H. Saathoff, and U. Schurath, The heterogeneous reaction of ozone with soot aerosol, Atmos. Environ. 33, 4651–4661 (1999),
http://dx.doi.org/10.1016/S1352-2310(99)00235-6
[9] L. Laakso, T. Hussein, P. Aarnio, M. Komppula, V. Hiltunen, Y. Viisanen, and M. Kulmala, Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland, Atmos. Environ. 37, 2629–2641 (2003),
http://dx.doi.org/10.1016/S1352-2310(03)00206-1
[10] F. Funasaka, T. Miyazaki, T. Kawaraya, K. Tsuruho, and T. Mizuno, Characteristics of particulates and gaseous pollutants in a highway tunnel, Environ. Pollut. 102, 171–176 (1998),
http://dx.doi.org/10.1016/S0269-7491(98)00101-8
[11] J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998),
https://www.amazon.co.uk/Atmospheric-Chemistry-Physics-Pollution-Climate/dp/0471178160/
[12] L.M. Castro, C.A. Pio, R.M. Harrison, and D.J.T. Smith, Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations, Atmos. Environ. 33, 2771–2781 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00331-8
[13] Z. Krivacsy, A. Hoffer, Zs. Sarvari, D. Temesi, U. Baltensperger, S. Nyeki, E. Weingartner, S. Kleefeld, and S.G. Jennings, Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites, Atmos. Environ. 35, 6231–6244 (2001),
http://dx.doi.org/10.1016/S1352-2310(01)00467-8
[14] S. Koga, T. Maeda, and N. Kaneyasu, Source contributions to black carbon mass fractions in aerosol particles over the northwestern Pacific, Atmos. Environ. 42, 800–814 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2007.09.052
[15] D. Šopauskienė and D. Jasinevičienė, Time series and trends in atmospheric concentrations of sulphur and nitrogen dioxides in Lithuania in 1981–2001, Environ. Chem. Phys. 26, 100–108 (2004)
[16] R.W. Bergstrom, P.B. Russell, and P. Hignett, The wavelenght dependence of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci. 59, 567–577 (2002),
http://dx.doi.org/10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2
[17] J. Sandradewi, A.S.H. Prevot, E. Weingartner, R. Schmidhauser, M. Gysel, and U. Baltensperger, A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer, Atmos. Environ. 42, 101–112 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2007.09.034
[18] V. Ulevičius, G. Mordas, and K. Plauškaitė, Nucleation events at the Preila environmental research station, Environ. Chem. Phys. 24, 38–44 (2002)
[19] R. Girgždienė, D. Šopauskienė, and A. Girgždys, The change of O3, SO2 and NO2 concentrations in Lithuania, Environ. Sci. Pollut. Res. 9, Supplement 1, 3–7 (2002),
http://dx.doi.org/10.1007/BF02987418
[20] D. Šopauskienė, D. Jasinevičienė, and S. Stapčinskaitė, The effect of changes in European anthropogenic emissions on the concentrations of sulphur and nitrogen components in air and precipitation in Lithuania, Water, Air Soil Pollut. 130, 517–522 (2001),
http://dx.doi.org/10.1023/A:1013826411072
[21] Real-time scientific measurements for over 20 years,
http://www.mageesci.com/
[22] W. Fendel, D. Matter, H. Bursther, and A. Schmidt-Ott, Interaction between carbon or iron aerosol particles and ozone, Atmos. Environ. 29, 963–973 (1995),
http://dx.doi.org/10.1016/1352-2310(95)00038-z
[23] NOAA,
http://www.arl.noaa.gov/ready.html
[24] A. Milukaitė, K. Kvietkus, and I. Rimšelytė, Organic and elemental carbon in coastal aerosol of the Baltic Sea, Lithuanian J. Phys. 47, 203–210 (2007),
http://dx.doi.org/10.3952/lithjphys.47205
[25] M. Kulmala, A. Toivonen, J.M. Mäkelä, and A. Laaksonen, Analysis and growth of the nucleation mode particles observed in Boreal forest, Tellus 50B, 449–462 (1998),
http://dx.doi.org/10.1034/j.1600-0889.1998.t01-4-00004.x
[26] K. Plauškaitė, R. Kazlauskaitė, J. Andriejauskienė, and V. Ulevičius, Parametrization of new particle formation and growth at the Preila station, Lithuanian J. Phys. 45, 139–147 (2005),
http://dx.doi.org/10.3952/lithjphys.45210
[27] F. Parungo, J.F. Boatman, H. Sievering, S.W. Wilkison, B.B. Hicks, Trends in global marine cloudiness and anthropogenic sulphur, J. Climate 7, 434–440 (1994),
http://dx.doi.org/10.1175/1520-0442(1994)007<0434:TIGMCA>2.0.CO;2
[28] H. Saathoff, K.H. Naumann, M. Schnaiter, W. Schock, E. Weingartner, U. Baltensperger, L. Kramer, Z. Bozoki, U. Poschl, R. Niessner, and U. Schurath, Carbon mass determinations during the AIDA soot aerosol campaign 1999, Aerosol Sci. 34, 1399–1420 (2003),
http://dx.doi.org/10.1016/S0021-8502(03)00365-3