[PDF]
http://dx.doi.org/10.3952/lithjphys.48211
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 163–176 (2008)
SPIN PROPERTIES OF FREE
ELECTRONS AND HOLES IN Hg1–xCdxTe/CdTe
QUANTUM WELL
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 17 February 2008; accepted
9 June 2008
Spin properties of Hg1–xCdxTe/CdTe
quantum wells (QW) with inverted energy bands are considered using
eight-band k·p Hamiltonian. The spin splitting of
doubly degenerate bands (Kramers pairs) was included via either
Rashba or external voltage Hamiltonians. The spin surfaces, which
describe the average spin as a function of spin direction of a
ballistic 2D charge carrier, in general, are shown to be
ellipsoidal rather than spherical. In extreme cases the spin
surfaces may reduce to disk, line, or Bloch sphere. Characteristic
shapes of the spin surfaces at different wave vectors and QW
composition x are presented in a form of graphs in the
spin space.
Keywords: spintronics, spin–orbit
coupling, spin models, II–VI semiconductors, spin-FET
PACS: 85.75.-d, 85.75.Hh, 75.10.Hk, 73.61.Ga
KVANTINIO Hg1–xCdxTe/CdTe
ŠULINIO LAISVŲJŲ ELEKTRONŲ BEI SKYLIŲ SUKINIO SAVYBĖS
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Pasitelkus aštuonių juostų k·p
hamiltonianą, išnagrinėtos Hg1–xCdxTe/CdTe
kvantinių šulinių su invertuotomis energijos juostomis sukinio
savybės. Energijos juostų suskilimas, susijęs su sukinio laisvės
laipsniu ir Kramerso poromis, buvo įskaitytas arba per Rashbos
hamiltonianą, arba per išorinio lauko hamiltonianą. Išnagrinėti
sukinio paviršių, kurie nusako sukinio dydžio priklausomybę nuo jo
krypties, pavidalai. Parodyta, kad balistinių dvimačių elektronų
sukinio paviršiai bendru atveju turį elipsoidinį, o ne labiau
įprastą sferinį pavidalą. Ribiniais atvejais sukinio paviršiai
gali transformuotis į diską, tiesę arba Blocho sferą. Grafiškai
pateiktos dvimačių elektronų ir skylių sukinio paviršių formos
sukinio erdvėje, esant įvairiems laisvojo krūvininko bangos
vektoriams ir skirtingoms kvantinį šulinį sudarančio junginio Hg1–xCdxTe
sudėtims.
References / Nuorodos
[1] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals
and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[2] R.H. Silsbee, Spin-orbit induced coupling of charge current and
spin polarization, J. Phys. Cond. Matter 16(7), R179–R207
(2004),
http://dx.doi.org/10.1088/0953-8984/16/7/R02
[3] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A.H.
MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev.
Mod. Phys 78(3), 809–864 (2006),
http://dx.doi.org/10.1103/RevModPhys.78.809
[4] A. Dargys, Why the spin-FET does not work?, Lithuanian J. Phys.
47(2), 185–194 (2007),
http://dx.doi.org/10.3952/lithjphys.47202
[5] L. Allen and J.H. Eberly, Optical Resonance and Two-Level
Atoms (Wiley–Interscience, New York, 1975), ch. 2,
http://store.doverpublications.com/0486655334.html
[6] S. Datta and B. Das, Electronic analog of the electrooptic
modulator, Appl. Phys. Lett. 56(2), 665–667 (1990),
http://dx.doi.org/10.1063/1.102730
[7] I. Appelbaum and D.J. Monsma, Transit-time spin field-effect
transistor, Appl. Phys. Lett. 90(26), 262501-1–3 (2007),
http://dx.doi.org/10.1063/1.2752015
[8] B. Huang, D.J. Monsma, and I. Appelbaum, Experimental
realization of a silicon spin field-effect transistor, Appl. Phys.
Lett. 91(7), 072501-1–3 (2007),
http://dx.doi.org/10.1063/1.2770656
[9] B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Quantum spin Hall
effect and topological phase transition in HgTe quantum wells,
Science 314(Dec.), 1757–1761 (2006),
http://dx.doi.org/10.1126/science.1133734
[10] M. König, S. Wiedmann, C. Brühne, A. Roth, H. Buhmann, L.W.
Molenkamp, X.-K. Qi, and S.C. Zhang, Quantum spin Hall insulator
state in HgTe quantum wells, Science 318(Nov.), 766–770
(2007),
http://dx.doi.org/10.1126/science.1148047
[11] M.H. Weiler, in: Semiconductors and Semimetals, eds. R.K.
Willardson and A.C. Beer, Vol. 16 (Academic Press, New York, 1981),
pp. 119–191,
https://www.elsevier.com/books/semiconductors-andampamp-semimetals-v16/author/978-0-12-752116-9
[12] M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli, and S.
Løvold, Rashba spin splitting in a gated HgTe quantum well,
Semicond. Sci. Technol. 11(8), 1168–1172 (1996),
http://dx.doi.org/10.1088/0268-1242/11/8/009
[13] K. Ortner, X.C. Zhang, A. Pfeuffer-Jeschke, C.R. Becker, G.
Landwehr, and L.W. Molenkamp, Valence band structure of HgTe/Hg1–xCdxTe
single quantum wells, Phys. Rev. B 66(7), 075322-1–6 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.075322
[14] V.F. Radantsev and A.M. Yafyasov, Rashba splitting in HgCdTe
MIS-structures, Zh. Eksp. Teor. Fiz. 122(3), 570–581 (2002)
[in Russian]; English translation: JETP 95(3), 491–501
(2002),
http://dx.doi.org/10.1134/1.1513822
[15] C.R. Becker, X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V.
Hock, G. Landwehr, and L.W. Molenkamp, Very large Rashba spin-orbit
splitting in HgTe quantum wells, J. Supercond. Incorp. Novel Magn. 16(4),
625–634 (2003),
http://dx.doi.org/10.1023/A:1025397303269
[16] Y.S. Gui, C.R. Becker, N. Dai, J. Liu, Z.J. Qiu, E.G. Novik, M.
Schäfer, X.Z. Shu, J.H. Chu, H. Buhmann, and L.W. Molenkamp, Giant
spin-orbit splitting in a HgTe quantum well, Phys. Rev. B 70(11),
115328-1–5 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.115328
[17] J. Hinz, H. Buhmann, M. Schäfer, V. Hock, C.R. Becker, and L.W.
Molenkamp, Gate control of the giant Rashba effect in HgTe quantum
wells, Semicond. Sci. Technol. 21(4), 501–506 (2006),
http://dx.doi.org/10.1088/0268-1242/21/4/015
[18] A. Dargys, Precession trajectories of the hole spin in
zinc-blende semiconductors, Solid-State Electron. 51(1),
93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[19] A. Dargys, Free-electron spin surfaces in 3D and 2D zinc-blende
semiconductors, Phys. Status Solidi B 243(8), R54–R56
(2006),
http://dx.doi.org/10.1002/pssb.200642136
[20] A. Dargys, Spin properties of 2D charge carriers in
semiconductors with inverted bands, Europhys. Lett. 81(3),
38003-1–4 (2008),
http://dx.doi.org/10.1209/0295-5075/81/38003
[21] M.G. Burt, The justification for applying the effective-mass
approximation to microstructures, J. Phys. Cond. Matter 4(32),
6651–6690 (1992),
http://dx.doi.org/10.1088/0953-8984/4/32/003
[22] B.A. Foreman, Effective-mass Hamiltonian and boundary
conditions for the valence bands of semiconductor microstructures,
Phys. Rev. B 48(7), 4964–4967 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.4964
[23] E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek,
C.R. Becker, G. Landwehr, H. Buhmann, and L.W. Molenkamp, Band
structure of semimagnetic Hg1–yMnyTe quantum wells, Phys. Rev. B 72(3),
035321-1–12 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.035321
[24] J.P. Laurenti, J. Camassel, and A. Bouhemadou, Temperature
dependence of the fundamental absorption edge of mercury cadmium
telluride, J. Appl. Phys. 67(10), 6454–6460 (1990),
http://dx.doi.org/10.1063/1.345119
[25] R. Wollrab, R. Sizmann, F. Koch, J. Ziegler, and H. Maier, Spin
splitting of the electron subbands in the electrostatic interface
potential on HgCdTe, Semicond. Sci. Technol. 4(6), 491–494
(1989),
http://dx.doi.org/10.1088/0268-1242/4/6/012
[26] X.C. Zhang, K. Ortner, A. Pfeuffer-Jeschke, C.R. Becker, and G.
Landwehr, Effective g factor of n-type HgTe / Hg1–xCdxTe single
quantum wells, Phys. Rev. B 69(11), 115340-1–7 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.115340
[27] X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H.
Buhmann, C.R. Becker, and G. Landwehr, Rashba splitting in n-type
modulation-doped HgTe quantum wells with an inverted band structure,
Phys. Rev. B 63(24), 245305-1–8 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.245305
[28] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer-Verlag, Berlin–Heidelberg,
2003),
http://dx.doi.org/10.1007/b13586
[29] G. Dresselhaus, Spin-orbit coupling effects in zinc blende
structures, Phys. Rev. 100(2), 580–586 (1955),
http://dx.doi.org/10.1103/PhysRev.100.580
[30] F. Boxberg and J. Tulkki, Theory of the electronic structure
and carrier dynamics of strain-induced (Ga,In)As quantum dots, Rep.
Prog. Phys. 70, 1425–1471 (2007),
http://dx.doi.org/10.1088/0034-4885/70/8/R04
[31] G.H. Golub and C.F. Van Loan, Matrix Computations (The
John Hopkins University Press, Baltimore and London, 1989),
https://jhupbooks.press.jhu.edu/content/matrix-computations
[32] C. Kittel, Quantum Theory of Solids (John Wiley & Sons, New
York, 1963), ch. 9,
https://www.amazon.co.uk/Quantum-Theory-Solids-KITTEL-1966-01-01/dp/B01K0S3SVY/
[33] M. Abolfath, T. Jungwirth, J. Brum, and A.H. MacDonald, Theory
of magnetic anisotropy in III1–xMnxV
ferromagnets, Phys. Rev. B 63(5), 054418-1–14 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.054418
[34] M. Tinkham, Group Theory and Quantum Mechanics
(McGraw-Hill, Inc, New York, 1964), appendix,
http://store.doverpublications.com/0486432475.html
[35] A. Dargys, Free-hole spin precession trajectories in A3B5
compounds, in: Advanced Optical Materials, Technologies, and
Devices, eds. S. Ašmontas and J. Gradauskas, Proc. SPIE 6596,
65960O-1–6 (2007),
http://dx.doi.org/10.1117/12.726411
[36] A. Dargys, Spin properties of Hg1–xCdxTe/CdTe
quantum wells, Phys. Status Solidi B (2008) [accepted],
http://dx.doi.org/10.1002/pssb.200844085