[PDF]    http://dx.doi.org/10.3952/lithjphys.48211

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 163–176 (2008)


SPIN PROPERTIES OF FREE ELECTRONS AND HOLES IN Hg1–xCdxTe/CdTe QUANTUM WELL
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 17 February 2008; accepted 9 June 2008

Spin properties of Hg1–xCdxTe/CdTe quantum wells (QW) with inverted energy bands are considered using eight-band k·p Hamiltonian. The spin splitting of doubly degenerate bands (Kramers pairs) was included via either Rashba or external voltage Hamiltonians. The spin surfaces, which describe the average spin as a function of spin direction of a ballistic 2D charge carrier, in general, are shown to be ellipsoidal rather than spherical. In extreme cases the spin surfaces may reduce to disk, line, or Bloch sphere. Characteristic shapes of the spin surfaces at different wave vectors and QW composition x are presented in a form of graphs in the spin space.
Keywords: spintronics, spin–orbit coupling, spin models, II–VI semiconductors, spin-FET
PACS: 85.75.-d, 85.75.Hh, 75.10.Hk, 73.61.Ga


KVANTINIO Hg1–xCdxTe/CdTe ŠULINIO LAISVŲJŲ ELEKTRONŲ BEI SKYLIŲ SUKINIO SAVYBĖS
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Pasitelkus aštuonių juostų k·p hamiltonianą, išnagrinėtos Hg1–xCdxTe/CdTe kvantinių šulinių su invertuotomis energijos juostomis sukinio savybės. Energijos juostų suskilimas, susijęs su sukinio laisvės laipsniu ir Kramerso poromis, buvo įskaitytas arba per Rashbos hamiltonianą, arba per išorinio lauko hamiltonianą. Išnagrinėti sukinio paviršių, kurie nusako sukinio dydžio priklausomybę nuo jo krypties, pavidalai. Parodyta, kad balistinių dvimačių elektronų sukinio paviršiai bendru atveju turį elipsoidinį, o ne labiau įprastą sferinį pavidalą. Ribiniais atvejais sukinio paviršiai gali transformuotis į diską, tiesę arba Blocho sferą. Grafiškai pateiktos dvimačių elektronų ir skylių sukinio paviršių formos sukinio erdvėje, esant įvairiems laisvojo krūvininko bangos vektoriams ir skirtingoms kvantinį šulinį sudarančio junginio Hg1–xCdxTe sudėtims.


References / Nuorodos


[1] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[2] R.H. Silsbee, Spin-orbit induced coupling of charge current and spin polarization, J. Phys. Cond. Matter 16(7), R179–R207 (2004),
http://dx.doi.org/10.1088/0953-8984/16/7/R02
[3] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A.H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys 78(3), 809–864 (2006),
http://dx.doi.org/10.1103/RevModPhys.78.809
[4] A. Dargys, Why the spin-FET does not work?, Lithuanian J. Phys. 47(2), 185–194 (2007),
http://dx.doi.org/10.3952/lithjphys.47202
[5] L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Wiley–Interscience, New York, 1975), ch. 2,
http://store.doverpublications.com/0486655334.html
[6] S. Datta and B. Das, Electronic analog of the electrooptic modulator, Appl. Phys. Lett. 56(2), 665–667 (1990),
http://dx.doi.org/10.1063/1.102730
[7] I. Appelbaum and D.J. Monsma, Transit-time spin field-effect transistor, Appl. Phys. Lett. 90(26), 262501-1–3 (2007),
http://dx.doi.org/10.1063/1.2752015
[8] B. Huang, D.J. Monsma, and I. Appelbaum, Experimental realization of a silicon spin field-effect transistor, Appl. Phys. Lett. 91(7), 072501-1–3 (2007),
http://dx.doi.org/10.1063/1.2770656
[9] B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(Dec.), 1757–1761 (2006),
http://dx.doi.org/10.1126/science.1133734
[10] M. König, S. Wiedmann, C. Brühne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-K. Qi, and S.C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318(Nov.), 766–770 (2007),
http://dx.doi.org/10.1126/science.1148047
[11] M.H. Weiler, in: Semiconductors and Semimetals, eds. R.K. Willardson and A.C. Beer, Vol. 16 (Academic Press, New York, 1981), pp. 119–191,
https://www.elsevier.com/books/semiconductors-andampamp-semimetals-v16/author/978-0-12-752116-9
[12] M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli, and S. Løvold, Rashba spin splitting in a gated HgTe quantum well, Semicond. Sci. Technol. 11(8), 1168–1172 (1996),
http://dx.doi.org/10.1088/0268-1242/11/8/009
[13] K. Ortner, X.C. Zhang, A. Pfeuffer-Jeschke, C.R. Becker, G. Landwehr, and L.W. Molenkamp, Valence band structure of HgTe/Hg1–xCdxTe single quantum wells, Phys. Rev. B 66(7), 075322-1–6 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.075322
[14] V.F. Radantsev and A.M. Yafyasov, Rashba splitting in HgCdTe MIS-structures, Zh. Eksp. Teor. Fiz. 122(3), 570–581 (2002) [in Russian]; English translation: JETP 95(3), 491–501 (2002),
http://dx.doi.org/10.1134/1.1513822
[15] C.R. Becker, X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, G. Landwehr, and L.W. Molenkamp, Very large Rashba spin-orbit splitting in HgTe quantum wells, J. Supercond. Incorp. Novel Magn. 16(4), 625–634 (2003),
http://dx.doi.org/10.1023/A:1025397303269
[16] Y.S. Gui, C.R. Becker, N. Dai, J. Liu, Z.J. Qiu, E.G. Novik, M. Schäfer, X.Z. Shu, J.H. Chu, H. Buhmann, and L.W. Molenkamp, Giant spin-orbit splitting in a HgTe quantum well, Phys. Rev. B 70(11), 115328-1–5 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.115328
[17] J. Hinz, H. Buhmann, M. Schäfer, V. Hock, C.R. Becker, and L.W. Molenkamp, Gate control of the giant Rashba effect in HgTe quantum wells, Semicond. Sci. Technol. 21(4), 501–506 (2006),
http://dx.doi.org/10.1088/0268-1242/21/4/015
[18] A. Dargys, Precession trajectories of the hole spin in zinc-blende semiconductors, Solid-State Electron. 51(1), 93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[19] A. Dargys, Free-electron spin surfaces in 3D and 2D zinc-blende semiconductors, Phys. Status Solidi B 243(8), R54–R56 (2006),
http://dx.doi.org/10.1002/pssb.200642136
[20] A. Dargys, Spin properties of 2D charge carriers in semiconductors with inverted bands, Europhys. Lett. 81(3), 38003-1–4 (2008),
http://dx.doi.org/10.1209/0295-5075/81/38003
[21] M.G. Burt, The justification for applying the effective-mass approximation to microstructures, J. Phys. Cond. Matter 4(32), 6651–6690 (1992),
http://dx.doi.org/10.1088/0953-8984/4/32/003
[22] B.A. Foreman, Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures, Phys. Rev. B 48(7), 4964–4967 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.4964
[23] E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, and L.W. Molenkamp, Band structure of semimagnetic Hg1–yMnyTe quantum wells, Phys. Rev. B 72(3), 035321-1–12 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.035321
[24] J.P. Laurenti, J. Camassel, and A. Bouhemadou, Temperature dependence of the fundamental absorption edge of mercury cadmium telluride, J. Appl. Phys. 67(10), 6454–6460 (1990),
http://dx.doi.org/10.1063/1.345119
[25] R. Wollrab, R. Sizmann, F. Koch, J. Ziegler, and H. Maier, Spin splitting of the electron subbands in the electrostatic interface potential on HgCdTe, Semicond. Sci. Technol. 4(6), 491–494 (1989),
http://dx.doi.org/10.1088/0268-1242/4/6/012
[26] X.C. Zhang, K. Ortner, A. Pfeuffer-Jeschke, C.R. Becker, and G. Landwehr, Effective g factor of n-type HgTe / Hg1–xCdxTe single quantum wells, Phys. Rev. B 69(11), 115340-1–7 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.115340
[27] X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C.R. Becker, and G. Landwehr, Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure, Phys. Rev. B 63(24), 245305-1–8 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.245305
[28] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer-Verlag, Berlin–Heidelberg, 2003),
http://dx.doi.org/10.1007/b13586
[29] G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Phys. Rev. 100(2), 580–586 (1955),
http://dx.doi.org/10.1103/PhysRev.100.580
[30] F. Boxberg and J. Tulkki, Theory of the electronic structure and carrier dynamics of strain-induced (Ga,In)As quantum dots, Rep. Prog. Phys. 70, 1425–1471 (2007),
http://dx.doi.org/10.1088/0034-4885/70/8/R04
[31] G.H. Golub and C.F. Van Loan, Matrix Computations (The John Hopkins University Press, Baltimore and London, 1989),
https://jhupbooks.press.jhu.edu/content/matrix-computations
[32] C. Kittel, Quantum Theory of Solids (John Wiley & Sons, New York, 1963), ch. 9,
https://www.amazon.co.uk/Quantum-Theory-Solids-KITTEL-1966-01-01/dp/B01K0S3SVY/
[33] M. Abolfath, T. Jungwirth, J. Brum, and A.H. MacDonald, Theory of magnetic anisotropy in III1–xMnxV ferromagnets, Phys. Rev. B 63(5), 054418-1–14 (2001),
http://dx.doi.org/10.1103/PhysRevB.63.054418
[34] M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, Inc, New York, 1964), appendix,
http://store.doverpublications.com/0486432475.html
[35] A. Dargys, Free-hole spin precession trajectories in A3B5 compounds, in: Advanced Optical Materials, Technologies, and Devices, eds. S. Ašmontas and J. Gradauskas, Proc. SPIE 6596, 65960O-1–6 (2007),
http://dx.doi.org/10.1117/12.726411
[36] A. Dargys, Spin properties of Hg1–xCdxTe/CdTe quantum wells, Phys. Status Solidi B (2008) [accepted],
http://dx.doi.org/10.1002/pssb.200844085