[PDF]    http://dx.doi.org/10.3952/lithjphys.48212

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 195–202 (2008)


SPECTROSCOPIC AND ANCIENT GEOMAGNETIC FIELD INTENSITY STUDIES ON ARCHAEOLOGICAL POTTERY SAMPLES, INDIA
C. Manoharana, K. Veeramuthua, R. Venkatachalapathyb, T. Radhakrishnac, and R. Ilangod
aDepartment of Physics, Annamalai University, Annamalainagar – 608 002, India
E-mail: cmanoharan1@rediffmail.com
bC. A. S. in Marine Biology, Annamalai University, Parangipettai – 608 502, India
cCentre for Earth Science Studies, Akkulam, Trivandrum – 695 031, India
dDepartment of Physics, RKM Vivekananda College, Mylapore, Chennai – 600 004, Tamil Nadu, India

Received 11 April 2008; revised 5 June 2008; accepted 9 June 2008

Spectroscopic and paleointensity studies have been performed on archaeological pottery samples from Mayiladumparai, Tamilnadu, India. The clay mineral type and its level of structural deformation due to firing were studied from their Fourier Transform Infrared (FTIR) Spectra. The maximum firing temperature attained during baking, firing conditions (open/reduced atmospheric) and iron mineral phase changes were well established. Intensive rock magnetic properties on these samples were carried out in order to select the samples for paleointensity measurements. The results showed that all the samples were magnetically enhanced having superparamagnetic grains with Curie temperature of magnetite (580 C) and yielded mean paleointensity value of 48.71±0.16 µT.
Keywords: archaeological artifacts, FTIR and paleointensity
PACS: 33.20.Ea, 91.25.Dx, 75.30.Cr


ARCHEOLOGINIŲ INDIJOS PUODŲ ŠUKIŲ SPEKTROSKOPIJA IR SENOVĖS GEOMAGNETINIO LAUKO STIPRIO TYRIMAS
C. Manoharana, K. Veeramuthua, R. Venkatachalapathyb, T. Radhakrishnac, R. Ilangod
aAnamalai universitetas, Annamalainagar, Indija
bAnamalai universiteto Jūrų biologijos aukštesniųjų studijų centras, Parangipettai, Indija
cGeomokslų studijų centras, Akkulam, Trivandrum, Indija
dVivekananda koledžas, Mylapore, Chennai, Tamil Nadu, Indija

Atlikti archeologinių puodų šukių pavyzdžių (Mayiladumparai, Tamilnadu, Indija) spektroskopiniai ir senovės magnetinio lauko stiprio tyrimai. Apie molio mineralinį tipą ir sandaros pokyčius dėl degimo spręsta iš Furje transformuotų infraraudonųjų (FTIR) spektrų. Patikimai nustatyti maksimali degimo metu pasiekta temperatūra, degimo sąlygos (atmosferinės ar riboto sąlyčio su oru) ir geležies mineralinių fazių kitimai. Intensyviai tirtos šių pavyzdžių uolienų magnetinės savybės, siekiant atrinkti pavyzdžius senovės magnetinio lauko intensyvumo matavimams. Rezultatai parodė, kad visi pavyzdžiai buvo magnetiškai aktyvūs, su superparamagnetinėmis granulėmis, kurių Kiuri temperatūra (580 C) tokia, kaip magnetito. Iš to seka vidutinė 48,71±0,16 µT senovės magnetinio lauko stiprio vertė.


References / Nuorodos


[1] S. Gurumurthy, Ceramic Traditions in South India (Down to 300 A. D.), Madras University Archaeological Series No. 4 (University of Madras, 1981),
http://www.mrmlonline.com/?page=shop/flypage&product_id=2294111
[2] M.C.B. Rodríguez and V.C. Álvarez, A preliminary archaeomagnetic study of prehistoric Amerindian pottery from Venezuela, Interciencia 24, 293–299 (1999),
http://www.interciencia.org/v24_05/index.html
[3] A.O. Shepard, Ceramics for the Archaeologist, Publication 609 (Carnegie Institution of Washington, Washington, DC, 1974),
[PDF]
[4] J.D. Russel, in: A Handbook of Determinative Methods in Clay Mineralogy, ed. M.J. Wilson (Chapman and Hall, Glasgow – Blackie & Sons, New York, 1987),
https://www.amazon.co.uk/Handbook-Determinative-Methods-Clay-Mineralogy/dp/0216918014/
[5] R. Venkatachalapathy, T. Sridharan, S. Dhanapandian, and C. Manoharan, Determination of firing temperature of ancient potteries by means of infrared and Mössbauer studies, Spectrosc. Lett. 35, 769–779 (2002),
http://dx.doi.org/10.1081/SL-120016279
[6] R. Venkatachalapathy, D. Gournis, C. Manoharan, S. Dhanapandian, and K. Deenadayalan, Application of FTIR and Mössbauer spectroscopic analysis of some South Indian archaeological potteries, Indian J. Pure Appl. Phys. 41, 833–838 (2003),
http://nopr.niscair.res.in/handle/123456789/25255
[7] E. Murad and U. Wagner, Mössbauer study of pure illite and its firing products, Hyperfine Interact. 91, 685–688 (1994),
http://dx.doi.org/10.1007/BF02064591
[8] E. Murad and U. Wagner, Clays and clay minerals: The firing process, Hyperfine Interact. 117, 337–356 (1998),
http://dx.doi.org/10.1023/A:1012683008035
[9] N. Jordanova, E. Petrousky, M. Kovacheva, and D. Jordanova, Factors determining magnetic enhancement of burnt clay from archaeological sites, J. Archaeol. Sci. 28, 1137–1148 (2007),
http://dx.doi.org/10.1006/jasc.2000.0645
[10] M. Kovacheva, N. Jordanova, and V. Karloukovski, Geomagnetic field variations as determined for Bulgarian archaeomagnetic data. Part II: The last 8000 years, Surv. Geophys. 19, 431–460 (1998),
http://dx.doi.org/10.1023/A:1006502313519
[11] N. Abrahamsen, An archaeomagnetic mastercurve for Denmark 0–2000 AD and the possible dating accuracy, in: Proceedings of the Sixth Nordic Conference on the Application of Scientific Methods in Archaeology, Esberg Museum 1993, 261–271 (1996)
[12] J. Dearing, R. Dann, K. Hay, J. Less, P. Loveland, B. Maher, K. O'Grady, Frequency-dependent susceptibility measurement of environmental materials, Geophys. J. Int. 124, 228–240 (1996),
http://dx.doi.org/10.1111/j.1365-246X.1996.tb06366.x
[13] T. Forster, M. Evans, and F. Heller, The frequency dependence of low field susceptibility in loess sediments, Geophys. J. Intern. 118, 636–642 (1994),
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03990.x
[14] U. Wagner, F.E. Wagner, W. Housler and I. Shimada, The use of Mössbauer spectroscopy in studies of archaeological ceramics, in: Radiation in Art and Archaeometry (Elsevier Science, 2000), pp. 417–443,
http://dx.doi.org/10.1016/B978-044450487-6/50064-X
[15] S.N. Ghosh, Infra-red spectra of some selected minerals, rocks and products, J. Mat. Sci. 13, 1877–1866 (1978),
http://dx.doi.org/10.1007/BF00552894
[16] M. Ishii and M. Nakahira. Infrared absorption spectra and cation distributions in (Mn,Fe)3O4, Solid State Commun. 11, 209–212 (1981),
http://dx.doi.org/10.1016/0038-1098(72)91162-3
[17] Jun Ojima, Determining of crystalline silica in respirable dust samples by infrared spectrophotometry in the presence of interpresences, J. Occup. Health 45, 94–103 (2003),
http://dx.doi.org/10.1539/joh.45.94
[18] R. Thompson and F. Oldfield, Environmental Magnetism (Allen & Unwin, London, 1986),
http://dx.doi.org/10.1007/978-94-011-8036-8
[19] S.D. Mooney, C. Geiss, and M.A. Smith, The use of mineral magnetic parameters to characterize archaeological ochres, J. Archaeol. Sci. 29, 1–10 (2002),
http://dx.doi.org/10.1006/jasc.2002.0856
[20] D.J. Dunlop and O. Özdemir, Rock magnetism. Fundamentals and frontiers, Part of Cambridge Studies in Magnetism, ed. D. Edwards (Cambridge University Press, 1997),
http://www.cambridge.org/lt/academic/subjects/earth-and-environmental-science/solid-earth-geophysics/rock-magnetism-fundamentals-and-frontiers
[21] H.U. Worm, On the superparamagnetic – stable single domain transition for magnetic, and frequency dependence of susceptibility, Geophys. J. Int. 133, 201–206 (1998),
http://dx.doi.org/10.1046/j.1365-246X.1998.1331468.x
[22] J. Dearing, P. Bird, R. Dann, and S. Benjamin, Secondary ferrimagnetic minerals in Welsh soils: A comparison of mineral magnetic detection methods and implications for mineral formation, Geophys. J. Int. 130, 727–736 (1997),
http://dx.doi.org/10.1111/j.1365-246X.1997.tb01867.x
[23] Li-Li Tian, Ri-Xiang Zhu, and Yong-Xin Pan, Rock magnetic properties of Hannuoba Basalts, Zhangbei, China, Chinese J. Geophys. 45, 872–878 (2002),
http://dx.doi.org/10.1002/cjg2.302
[24] Ri-Xiang Zhu, Bin Guo, and Zhong-Li Ding, Gauss–Matuyama polarity transition obtained from a loess section at Weiman, North-Central China, Chinese J. Geophys. 43, 621–634 (2000),
http://dx.doi.org/10.1002/cjg2.81
[25] J. Blomendal, J.W. King, F.R. Hall, and S.H. Doh, Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship with sediment source, diagenetic processes, and sedimentation lithology, J. Geophys. Res. 97, 4361–4375 (1992),
http://dx.doi.org/10.1029/91JB03068
[26] M.W. McElhinny and W.E. Senanyake, Variations in the geomagnetic dipole, the past 50,000 years, J. Geomagn. Geoelectr. 34, 39–51 (1982),
http://dx.doi.org/10.5636/jgg.34.39
[27] L.M. Alva-Valdivia, M.L. Rivas, A. Goguitchaichivili, J. Urrutia-Fucugauchi, J.A. Gonalez, J. Morales, and S. Gomez, Rock-magnetic and oxide microscopic studies of the E1 Laco iron ore deposits, Chilean Andes and implications for magnetic anomaly modeling, Int. Geol. Rev. 45, 533–547 (2003),
http://dx.doi.org/10.2747/0020-6814.45.6.533
[28] Y. Cui, K.L. Verosub, A.P. Roberts, and M. Kovacheva, Rock magnetic studies of archaeological samples: Implications for sample selections for paleointensity determinations, J. Geomagn. Geoelectr. 49, 567–585 (1997),
http://dx.doi.org/10.5636/jgg.49.567
[29] E. Thellier and O. Thellier, Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophys. 15, 285–376 (1959),
https://earthref.org/ERR/731/
[30] R.S. Coe, Paleo-intensities of the Earth's magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res. 72, 3247–3262 (1967),
http://dx.doi.org/10.1029/JZ072i012p03247
[31] M. Kono, Changes in TRM and ARM in basalts due to laboratory heating, Phys. Earth Planet. Inter. 46, 1–8 (1987),
http://dx.doi.org/10.1016/0031-9201(87)90167-1
[32] E. Thellier, Sur l'aimantation des terres cuites et ses applications géophysiques, Ann. Inst. Phys. Globe 16, 157–302 (1938)
[33] M. Prévot, E.A. Mankinen, R.S. Coe, and C.S. Grommé, The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models, J. Geophys. Res. 90, 10417–10448 (1985),
http://dx.doi.org/10.1029/JB090iB12p10417