[PDF]
http://dx.doi.org/10.3952/lithjphys.48212
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 195–202 (2008)
SPECTROSCOPIC AND ANCIENT
GEOMAGNETIC FIELD INTENSITY STUDIES ON ARCHAEOLOGICAL POTTERY
SAMPLES, INDIA
C. Manoharana, K. Veeramuthua, R.
Venkatachalapathyb, T. Radhakrishnac, and R.
Ilangod
aDepartment of Physics, Annamalai University,
Annamalainagar – 608 002, India
E-mail: cmanoharan1@rediffmail.com
bC. A. S. in Marine Biology, Annamalai University,
Parangipettai – 608 502, India
cCentre for Earth Science Studies, Akkulam,
Trivandrum – 695 031, India
dDepartment of Physics, RKM Vivekananda College,
Mylapore, Chennai – 600 004, Tamil Nadu, India
Received 11 April 2008; revised 5
June 2008; accepted 9 June 2008
Spectroscopic and paleointensity
studies have been performed on archaeological pottery samples from
Mayiladumparai, Tamilnadu, India. The clay mineral type and its
level of structural deformation due to firing were studied from
their Fourier Transform Infrared (FTIR) Spectra. The maximum
firing temperature attained during baking, firing conditions
(open/reduced atmospheric) and iron mineral phase changes were
well established. Intensive rock magnetic properties on these
samples were carried out in order to select the samples for
paleointensity measurements. The results showed that all the
samples were magnetically enhanced having superparamagnetic grains
with Curie temperature of magnetite (580 ◦C) and
yielded mean paleointensity value of 48.71±0.16 µT.
Keywords: archaeological artifacts, FTIR
and paleointensity
PACS: 33.20.Ea, 91.25.Dx, 75.30.Cr
ARCHEOLOGINIŲ INDIJOS PUODŲ
ŠUKIŲ SPEKTROSKOPIJA IR SENOVĖS GEOMAGNETINIO LAUKO STIPRIO
TYRIMAS
C. Manoharana, K. Veeramuthua, R.
Venkatachalapathyb, T. Radhakrishnac, R.
Ilangod
aAnamalai universitetas, Annamalainagar, Indija
bAnamalai universiteto Jūrų biologijos
aukštesniųjų studijų centras, Parangipettai, Indija
cGeomokslų studijų centras, Akkulam, Trivandrum,
Indija
dVivekananda koledžas, Mylapore, Chennai, Tamil
Nadu, Indija
Atlikti archeologinių puodų šukių pavyzdžių
(Mayiladumparai, Tamilnadu, Indija) spektroskopiniai ir senovės
magnetinio lauko stiprio tyrimai. Apie molio mineralinį tipą ir
sandaros pokyčius dėl degimo spręsta iš Furje transformuotų
infraraudonųjų (FTIR) spektrų. Patikimai nustatyti maksimali
degimo metu pasiekta temperatūra, degimo sąlygos (atmosferinės ar
riboto sąlyčio su oru) ir geležies mineralinių fazių kitimai.
Intensyviai tirtos šių pavyzdžių uolienų magnetinės savybės,
siekiant atrinkti pavyzdžius senovės magnetinio lauko intensyvumo
matavimams. Rezultatai parodė, kad visi pavyzdžiai buvo
magnetiškai aktyvūs, su superparamagnetinėmis granulėmis, kurių
Kiuri temperatūra (580 ◦C) tokia, kaip magnetito. Iš
to seka vidutinė 48,71±0,16 µT senovės magnetinio lauko
stiprio vertė.
References / Nuorodos
[1] S. Gurumurthy, Ceramic Traditions in South India (Down to
300 A. D.), Madras University Archaeological Series No. 4
(University of Madras, 1981),
http://www.mrmlonline.com/?page=shop/flypage&product_id=2294111
[2] M.C.B. Rodríguez and V.C. Álvarez, A preliminary archaeomagnetic
study of prehistoric Amerindian pottery from Venezuela, Interciencia
24, 293–299 (1999),
http://www.interciencia.org/v24_05/index.html
[3] A.O. Shepard, Ceramics for the Archaeologist,
Publication 609 (Carnegie Institution of Washington, Washington, DC,
1974),
[PDF]
[4] J.D. Russel, in: A Handbook of Determinative Methods in Clay
Mineralogy, ed. M.J. Wilson (Chapman and Hall, Glasgow –
Blackie & Sons, New York, 1987),
https://www.amazon.co.uk/Handbook-Determinative-Methods-Clay-Mineralogy/dp/0216918014/
[5] R. Venkatachalapathy, T. Sridharan, S. Dhanapandian, and C.
Manoharan, Determination of firing temperature of ancient potteries
by means of infrared and Mössbauer studies, Spectrosc. Lett. 35,
769–779 (2002),
http://dx.doi.org/10.1081/SL-120016279
[6] R. Venkatachalapathy, D. Gournis, C. Manoharan, S. Dhanapandian,
and K. Deenadayalan, Application of FTIR and Mössbauer spectroscopic
analysis of some South Indian archaeological potteries, Indian J.
Pure Appl. Phys. 41, 833–838 (2003),
http://nopr.niscair.res.in/handle/123456789/25255
[7] E. Murad and U. Wagner, Mössbauer study of pure illite and its
firing products, Hyperfine Interact. 91, 685–688 (1994),
http://dx.doi.org/10.1007/BF02064591
[8] E. Murad and U. Wagner, Clays and clay minerals: The firing
process, Hyperfine Interact. 117, 337–356 (1998),
http://dx.doi.org/10.1023/A:1012683008035
[9] N. Jordanova, E. Petrousky, M. Kovacheva, and D. Jordanova,
Factors determining magnetic enhancement of burnt clay from
archaeological sites, J. Archaeol. Sci. 28, 1137–1148
(2007),
http://dx.doi.org/10.1006/jasc.2000.0645
[10] M. Kovacheva, N. Jordanova, and V. Karloukovski, Geomagnetic
field variations as determined for Bulgarian archaeomagnetic data.
Part II: The last 8000 years, Surv. Geophys. 19, 431–460
(1998),
http://dx.doi.org/10.1023/A:1006502313519
[11] N. Abrahamsen, An archaeomagnetic mastercurve for Denmark
0–2000 AD and the possible dating accuracy, in: Proceedings of
the Sixth Nordic Conference on the Application of Scientific
Methods in Archaeology, Esberg Museum 1993, 261–271 (1996)
[12] J. Dearing, R. Dann, K. Hay, J. Less, P. Loveland, B. Maher, K.
O'Grady, Frequency-dependent susceptibility measurement of
environmental materials, Geophys. J. Int. 124, 228–240
(1996),
http://dx.doi.org/10.1111/j.1365-246X.1996.tb06366.x
[13] T. Forster, M. Evans, and F. Heller, The frequency dependence
of low field susceptibility in loess sediments, Geophys. J. Intern.
118, 636–642 (1994),
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03990.x
[14] U. Wagner, F.E. Wagner, W. Housler and I. Shimada, The use of
Mössbauer spectroscopy in studies of archaeological ceramics, in: Radiation
in Art and Archaeometry (Elsevier Science, 2000), pp. 417–443,
http://dx.doi.org/10.1016/B978-044450487-6/50064-X
[15] S.N. Ghosh, Infra-red spectra of some selected minerals, rocks
and products, J. Mat. Sci. 13, 1877–1866 (1978),
http://dx.doi.org/10.1007/BF00552894
[16] M. Ishii and M. Nakahira. Infrared absorption spectra and
cation distributions in (Mn,Fe)3O4, Solid
State Commun. 11, 209–212 (1981),
http://dx.doi.org/10.1016/0038-1098(72)91162-3
[17] Jun Ojima, Determining of crystalline silica in respirable dust
samples by infrared spectrophotometry in the presence of
interpresences, J. Occup. Health 45, 94–103 (2003),
http://dx.doi.org/10.1539/joh.45.94
[18] R. Thompson and F. Oldfield, Environmental Magnetism
(Allen & Unwin, London, 1986),
http://dx.doi.org/10.1007/978-94-011-8036-8
[19] S.D. Mooney, C. Geiss, and M.A. Smith, The use of mineral
magnetic parameters to characterize archaeological ochres, J.
Archaeol. Sci. 29, 1–10 (2002),
http://dx.doi.org/10.1006/jasc.2002.0856
[20] D.J. Dunlop and O. Özdemir, Rock magnetism.
Fundamentals and frontiers, Part of Cambridge Studies in
Magnetism, ed. D. Edwards (Cambridge University Press, 1997),
http://www.cambridge.org/lt/academic/subjects/earth-and-environmental-science/solid-earth-geophysics/rock-magnetism-fundamentals-and-frontiers
[21] H.U. Worm, On the superparamagnetic – stable single domain
transition for magnetic, and frequency dependence of susceptibility,
Geophys. J. Int. 133, 201–206 (1998),
http://dx.doi.org/10.1046/j.1365-246X.1998.1331468.x
[22] J. Dearing, P. Bird, R. Dann, and S. Benjamin, Secondary
ferrimagnetic minerals in Welsh soils: A comparison of mineral
magnetic detection methods and implications for mineral formation,
Geophys. J. Int. 130, 727–736 (1997),
http://dx.doi.org/10.1111/j.1365-246X.1997.tb01867.x
[23] Li-Li Tian, Ri-Xiang Zhu, and Yong-Xin Pan, Rock magnetic
properties of Hannuoba Basalts, Zhangbei, China, Chinese J. Geophys.
45, 872–878 (2002),
http://dx.doi.org/10.1002/cjg2.302
[24] Ri-Xiang Zhu, Bin Guo, and Zhong-Li Ding, Gauss–Matuyama
polarity transition obtained from a loess section at Weiman,
North-Central China, Chinese J. Geophys. 43, 621–634 (2000),
http://dx.doi.org/10.1002/cjg2.81
[25] J. Blomendal, J.W. King, F.R. Hall, and S.H. Doh, Rock
magnetism of Late Neogene and Pleistocene deep-sea sediments:
Relationship with sediment source, diagenetic processes, and
sedimentation lithology, J. Geophys. Res. 97, 4361–4375
(1992),
http://dx.doi.org/10.1029/91JB03068
[26] M.W. McElhinny and W.E. Senanyake, Variations in the
geomagnetic dipole, the past 50,000 years, J. Geomagn. Geoelectr. 34,
39–51 (1982),
http://dx.doi.org/10.5636/jgg.34.39
[27] L.M. Alva-Valdivia, M.L. Rivas, A. Goguitchaichivili, J.
Urrutia-Fucugauchi, J.A. Gonalez, J. Morales, and S. Gomez,
Rock-magnetic and oxide microscopic studies of the E1 Laco iron ore
deposits, Chilean Andes and implications for magnetic anomaly
modeling, Int. Geol. Rev. 45, 533–547 (2003),
http://dx.doi.org/10.2747/0020-6814.45.6.533
[28] Y. Cui, K.L. Verosub, A.P. Roberts, and M. Kovacheva, Rock
magnetic studies of archaeological samples: Implications for sample
selections for paleointensity determinations, J. Geomagn. Geoelectr.
49, 567–585 (1997),
http://dx.doi.org/10.5636/jgg.49.567
[29] E. Thellier and O. Thellier, Sur l'intensité du champ
magnétique terrestre dans le passé historique et géologique, Ann.
Géophys. 15, 285–376 (1959),
https://earthref.org/ERR/731/
[30] R.S. Coe, Paleo-intensities of the Earth's magnetic field
determined from Tertiary and Quaternary rocks, J. Geophys. Res. 72,
3247–3262 (1967),
http://dx.doi.org/10.1029/JZ072i012p03247
[31] M. Kono, Changes in TRM and ARM in basalts due to laboratory
heating, Phys. Earth Planet. Inter. 46, 1–8 (1987),
http://dx.doi.org/10.1016/0031-9201(87)90167-1
[32] E. Thellier, Sur l'aimantation des terres cuites et ses
applications géophysiques, Ann. Inst. Phys. Globe 16,
157–302 (1938)
[33] M. Prévot, E.A. Mankinen, R.S. Coe, and C.S. Grommé, The Steens
Mountain (Oregon) geomagnetic polarity transition 2. Field intensity
variations and discussion of reversal models, J. Geophys. Res. 90,
10417–10448 (1985),
http://dx.doi.org/10.1029/JB090iB12p10417