[PDF]   
    http://dx.doi.org/10.3952/lithjphys.48301
    
    Open access article / Atviros prieigos straipsnis
    
    Lith. J. Phys. 48, 249–258 (2008)
    
    
    INFLUENCE OF LIGHT ON STRUCTURE
        OF AMORPHOUS SELENIUM LAYERS
      E. Montrimas, R. Rinkūnas, S. Kuskevičius, and R. Purlys
      Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222
        Vilnius, Lithuania
      E-mail: ringaudas.rinkunas@ff.vu.lt
    
    
    Received 6 June 2007; revised 4
      July 2008; accepted 18 September 2008
    
    
    After exposure of amorphous
      selenium islands to luminous flux of 1
10
6
      lx, they do not become crystalline, but remain amorphous. However,
      light stimulates polymerization of molecules in those islands. For
      this reason, heating of a layer that is exposed to light does not
      cause a decrease of the mean thickness of the layer, but heating
      of the layer in the dark causes a decrease of its mean thickness.
      Therefore, the mean thickness of the illuminated layer is 3 to 4
      times greater than the mean thickness of the layer in the dark. In
      addition, the fraction of the substrate covered by the islands is
      1.5 to 2 times larger in the exposed layer than in the unexposed
      layer. However, illumination of a continuous layer speeds up its
      transformation into an island-type layer. Therefore, in order to
      obtain an extremely thin continuous layer of amorphous selenium,
      during growth of the layer it must be exposed to light only until
      it becomes continuous. Starting from that moment, the light must
      be switched off.
    
Keywords: thin film, selenium, island,
      polymer
    
    PACS: 68.37.-d, 68.43.Jk, 68.55.Ac
    
    
    ŠVIESOS ĮTAKA AMORFINIO SELENO
        SLUOKSNIŲ STRUKTŪROS POKYČIAMS
      E. Montrimas, R. Rinkūnas, S. Kuskevičius, R. Purlys
      Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
      
    
    Apšvietus amorfines seleno saleles 1
10
6
      lx šviesos srautu, jos netampa kristalinėmis, o išlieka amorfinės,
      tačiau šviesa skatina jose molekulių polimerizaciją. Dėl šios
      priežasties, kaitinant pavyzdėlį, apšviesto sluoksnio vidutinis
      storis nemažėja, o esančio tamsoje – mažėja. Apšviestas sluoksnis
      tampa vidutiniškai 3–4 kartus storesnis už esantį tamsoje. Taip
      pat ir užpildyta salelėmis padėklo dalis yra 1,5–2 kartus didesnė
      apšviestame sluoksnyje, negu esančiame tamsoje. Tačiau apšvietus
      ištisinį sluoksnį, šis greičiau persitvarkys į salelinį. Taigi,
      norint pagaminti kuo plonesnį ištisinį amorfinio seleno sluoksnį,
      reikia apšviesti augimo metu tik tol, kol jis taps ištisiniu, o
      tada šviesą išjungti.
    
      
      References / Nuorodos
    
    [1] Z. Zhang and X. Yang, The effect of chain interpenetration on an
    ordering process in the early stage of polymer crystal nucleation,
    Polymer 47, 5213–5219 (2006), 
    http://dx.doi.org/10.1016/j.polymer.2006.05.001
    [2] K.S.S. Harsha, Principles of Physical Vapor Deposition of
      Thin Films, 1st ed. (Elsevier Science, 2005), 
    http://store.elsevier.com/Principles-of-Vapor-Deposition-of-Thin-Films/Professor-K_S_-Sree-Harsha/isbn-9780080480312/
    [3] A.Yu. Menshutin, L.N. Shchur, and V.M. Vinokur, Probing surface
    characteristics of diffusion-limitedaggregation clusters with
    particles of variable size, Phys. Rev. E 75, 010401-1–4
    (2007), 
    http://dx.doi.org/10.1103/PhysRevE.75.010401
    [4] L.S. Hunga and C.H. Chen, Recent progress of molecular organic
    electroluminescent materials and devices, Mater. Sci. Eng. R 39,
    143–222 (2002), 
    http://dx.doi.org/10.1016/S0927-796X(02)00093-1
    [5] E. Montrimas and R. Rinkūnas, Phase composition of amorphous Se
    island layers, Lithuanian J. Phys 45, 263–266 (2005), 
    http://dx.doi.org/10.3952/lithjphys.45406
    [6] Y. Ueda, M. Matsushita, S. Morimoto, J. Ni, H. Suzuki, and S.
    Mashiko, Structure and crystal growth of low molecular weight
    polyethylene vapor deposited on polymer friction-transferred layers,
    Thin Solid Films 331, 216–221 (1998), 
    http://dx.doi.org/10.1016/S0040-6090(98)00922-5
    [7] M. Goto, A. Kasahara, and M. Tosa, Growth of boron nitride nano
    islands on substrates, triggered by internal stress, Surf. Coatings
    Technology 168, 98–101 (2003), 
    http://dx.doi.org/10.1016/S0257-8972(02)00860-5
    [8] H. Ko and H. Lee, Fabrication of colloidal self-assembled
    monolayer (SAM) using monodisperse silica and its use as a
    lithographic mask, Thin Solid Films 447–448, 638–644 (2004),
    
    http://dx.doi.org/10.1016/j.tsf.2003.04.001
    [9] C.A. Poynton, Digital Video and HDTV: Algorithms and
      Interfaces (Morgan Kaufmann Publishers, Toronto, 2002), 
    http://poynton.com/notes/DVAI/index.html
    [10] J.P. Audiere, C. Mazieres, and J.C. Carbales, Noncrystalline Se
    thin films deposited from controlled vapor-preparation,
    crystallization and optical properties, J. Non-Cryst. Solids 27,
    411–419 (1978), 
    http://dx.doi.org/10.1016/0022-3093(78)90023-6
    [11] Tables of Physical Quantities, ed. I.K. Kikoin
    (Atomizdat, Moscow, 1976) [in Russian]
    [12] Br. Petretis and R. Rinkunas, The adatom density in
    discontinuous selenium films, Thin Solid Films 128, 269–273
    (1985), 
    http://dx.doi.org/10.1016/0040-6090(85)90078-1
    [13] K.S. Sree Harsha, Principles of Physical Vapor Deposition
      of Thin Films (Elsevier, Amsterdam, 2006), 
    http://store.elsevier.com/Principles-of-Vapor-Deposition-of-Thin-Films/Professor-K_S_-Sree-Harsha/isbn-9780080480312/
    [14] Br. Petretis, R. Rinkunas, and V. Filipavicius, The mass
    transport mechanism in discontinuous selenium films, Thin Solid
    Films 85, 301–306 (1981), 
    http://dx.doi.org/10.1016/0040-6090(81)90136-X
    [15] J. Dresner and G.B. Stringfellow, Electronic processes in the
    photo-crystallization of vitreous selenium, J. Phys. Chem. Solids 29,
    303–311 (1968), 
    http://dx.doi.org/10.1016/0022-3697(68)90075-9
    [16] H. Fiedler, J. Lauckner, and J. Finke, Photoinduzierte
    Phasenumwandlungen in Selenschichten, J. Signal 6, 467–473
    (1978)
    [17] L.H. Sperling, Introduction to Physical Polymer Science
    (John Wiley & Sons, Hoboken, New Jersey, 2006), 
    http://dx.doi.org/10.1002/0471757128
    [18] R.J. Beuhler, L.J. Greene, and L. Friedman, Solvated proton
    mass spectra of a tripeptide derivative, J. Am. Chem. Soc. 93,
    4307–4312 (1971), 
    http://dx.doi.org/10.1021/ja00746a045
    [19] R.J. Beuhler, E. Flanigan, L.J. Greene, and L. Friedman, Proton
    transfer mass spectrometry of peptides. A rapid heating technique
    for underivatized peptides containing arginine, J. Am. Chem. Soc. 96,
    3990–3995 (1974), 
    http://dx.doi.org/10.1021/ja00819a043