[PDF]    http://dx.doi.org/10.3952/lithjphys.48302

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 275–285 (2008)


MODELLING OF LOW ENERGY X-RAY SCATTERING IN RADIATION DETECTORS WITH PROTECTIVE COATINGS
I. Cibulskaitė, D. Adlienė, and J. Laurikaitienė
Kaunas University of Technology, Studentų 50, LT-51368 Kaunas
E-mail: agnici@gmail.com

Received 21 February 2008; revised 25 July 2008; accepted 18 September 2008

The results of Monte Carlo modelling of the low energy X-ray photon interaction processes in Si detector coated by different materials of different thickness are presented in this paper. Detector constructions containing free standing polymer-like carbon coatings and diamond-like carbon (DLC) coatings deposited onto detector surface were investigated. Total and scatter doses in coated samples were calculated and the influence of the coating material, composition, and thickness on the X-ray photon scattering processes in Si detector was evaluated. Evaluation of the detector construction with protective coating corresponding to the lowest fraction of scattered photons as compared to the calculated total dose is discussed in the paper. It is shown that nanothick DLC coatings directly deposited onto detector surface are promising materials in the construction of radiation detectors due to their suitable mechanical properties, resistance against chemicals and against radiation damage of DLC films.
Keywords: scattered radiation, detectors, Monte Carlo method, DLC films
PACS: 02.70.Uu, 29.40.Wk, 32.80.Cy, 81.05.Uw, 81.40.Wx


MAŽOS ENERGIJOS RENTGENO SPINDULIUOTĖS SKLAIDOS MODELIAVIMAS DETEKTORIUOSE SU APSAUGINĖMIS DANGOMIS
I. Cibulskaitė, D. Adlienė, J. Laurikaitienė
Kauno technologijos universitetas, Kaunas, Lietuva

Pristatomi mažų energijų Rentgeno fotonų sąveikos su Si detektoriumi Monte Karlo modeliavimo rezultatai, leidžiantys įvertinti įvairių detektoriaus apsauginių dangų įtaką dozėms, registruojamoms detektoriuje. Tyrimui pasirinktos detektorių konstrukcijos su apsauginėmis polimerinio tipo anglies bei deimanto tipo anglies dangomis. Šiems detektoriams apskaičiuotos pilnoji bei sklaidos dozės, pagal kurias vertinta apsauginės dangos elementinės sudėties bei storio įtaka Rentgeno fotonų sklaidai Si detektoriuje. Aptariamas detektorių su apsaugine danga vertinimas pagal mažiausios išsklaidytų fotonų frakcijos, lyginant su pilnąja sugertąja doze, kriterijų. Parodyta, kad dėl išskirtinių mechaninių savybių, atsparumo cheminiam poveikiui bei radiaciniams pažeidimams deimanto tipo anglies dangos, tiesiogiai nusodintos ant detektoriaus paviršiaus, yra perspektyvios konstruojant fotonų detektorius.


References / Nuorodos


[1] J. Van Dam, H. Bosmans, G. Marchal, and A. Wambersie, Characteristics of dosemeter types for skin dose measurements in practice, Radiat. Prot. Dosimetry 117, 185–189 (2006),
http://dx.doi.org/10.1093/rpd/nci713
[2] M. Hoheisel, Review of medical imaging with emphasis on X-ray detectors, Nucl. Instrum. Methods A 563, 215–224 (2006),
http://dx.doi.org/10.1016/j.nima.2006.01.123
[3] S.W.S. McKeever, New millennium frontiers of luminescence dosimetry, Radiat. Prot. Dosimetry 100, 27–32 (2002),
http://dx.doi.org/10.1093/oxfordjournals.rpd.a005865
[4] D.J. Peet and M.D. Pryor, Evaluation of a MOSFET radiation sensor for the measurement of entrance surface dose in diagnostic radiology, The Brit. J. Radiol. 72, 562–568 (1999),
http://dx.doi.org/10.1259/bjr.72.858.10560338
[5] Z. Yin, R.P. Hugtenburg, and A.H. Beddoe, Response corrections for solid state detectors in megavoltage photon dosimetry, Phys. Med. Biol. 49, 3691–3702 (2004),
http://dx.doi.org/10.1088/0031-9155/49/16/015
[6] A.B. Rosenfeld, D. Cutajar, M.L.F. Lerch, G. Takacs, I.M. Cornelius, M. Yudelev, and M. Zaider, Miniature semiconductor detectors for in vivo dosimetry, Radiat. Prot. Dosimetry 120, 48–55 (2006),
http://dx.doi.org/10.1093/rpd/nci645
[7] A.B. Rosenfeld, A. Wroe, I. Cornelius, and M. Carolan, Verification of Monte Carlo simulations in hadron therapy with non-tissue equivalent detectors, Radiat. Prot. Dosimetry 119, 487–490 (2006),
http://dx.doi.org/10.1093/rpd/nci618
[8] D. Adlienė and I. Cibulskaitė, Evaluation of scattered radiation in mammography examination with Si detectors, Lithuanian J. Phys. 46, 261–270 (2006),
http://dx.doi.org/10.3952/lithjphys.46208
[9] J.M. Boon, K. Lindfors, K. Cooper, and J.A. Seibert, Scatter / primary in mammography: Comprehensive results, Med. Phys. 27, 2408–2416 (2000),
http://dx.doi.org/10.1118/1.1312812
[10] N. Meric, D. an Bor, and N. Büget, Determination of scatter fractions of some materials by experimental studies and Monte Carlo calculations, Appl. Radiat. Isotopes 51, 161–167 (1999),
http://dx.doi.org/10.1016/S0969-8043(98)00160-2
[11] M. Bucciolini, F.B. Buonamici, S. Mazzocchi, C.D. Angelis, S. Onori, and G.A. Cirrone, Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size, Med. Phys. 30, 2149–2154 (2003),
http://dx.doi.org/10.1118/1.1591431
[12] G.A.P. Cirrone, G. Cuttone, L. Raffaele, M.G. Sabini, C. De Angelis, S. Onori, M. Pacilio, M. Bucciolini, M. Bruzzi, and S. Sciortino, Natural and CVD type diamond detectors as dosimeters in hadrontherapy applications, Nucl. Phys. B 125, 179–183 (2003),
http://dx.doi.org/10.1016/S0920-5632(03)90987-X
[13] S. Tamulevičius, V. Kopustinskas, Š. Meškinis, and L. Augulis, Mechanical properties of ion beam deposited carbon films, Carbon 42, 1085–1088 (2004),
http://dx.doi.org/10.1016/j.carbon.2003.12.040
[14] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. 37, 129–281 (2002),
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[15] F. Atchison, T. Brys, M. Daum, P. Fierlinger, A. Foelske, et al., Structual characterization of diamond-like carbon films for ultracold neutron applications, Diamond Rel. Mater. 16, 334–341 (2007),
http://dx.doi.org/10.1016/j.diamond.2006.06.008
[16] X.Y. Han, S.J. Zhuo, R.X. Shen, P.L. Wang, G.Y. Tao, and A. Ji, Calculation of the contribution of scattering effects to X-ray fluorescence intensity for coating samples, Spectrochim. Acta, Part B 61, 113–119 (2006),
http://dx.doi.org/10.1016/j.sab.2005.10.012
[17] I. Cibulskaitė and D. Adlienė, Comparison of Monte Carlo simulated scattering processes of low energy photons in radiation detector materials, Nucl. Instrum. Methods A 580, 73–76 (2007),
http://dx.doi.org/10.1016/j.nima.2007.05.041
[18] S.R. Amendolia, M.G. Bisogni, P. Delogu, M.E. Fantacci, M. Novelli, P. Oliva, M. Quattrocchi, V. Rosso, A. Stefanini, and S. Zucca, Experimental study of Compton scattering reduction in digital mammography imaging, IEEE Trans. Nucl. Sci. 49, 2361–2365 (2002),
http://dx.doi.org/10.1109/TNS.2002.803816
[19] P. Fajardo, V. Honkimäki, T. Buslaps, and P. Suortti, Experimental validation of multiple scattering calculations with high energy X-ray photons, Nucl. Instrum. Methods B 134, 337–345 (1998),
http://dx.doi.org/10.1016/S0168-583X(97)00736-2
[20] European Protocol on Dosimetry in Mammography, European Commisson Report EUR 16263EN, ISBN 92-827-7289-6 (European Commission, Luxemburg),
[PDF]
[21] D.R. Dance, C.L. Skinner, K.C. Young, J.R. Beckett, and C.J. Kotre, Additional factors for estimation of mean glandular breast ude using the UK mammography dosimetry protocol, Phys. Med. Biol. 45, 3225–3240 (2000),
http://dx.doi.org/10.1088/0031-9155/45/11/308
[22] Dosimetric Aspects of Mammography, Report 6 of the Netherlands Commission on Radiation Dosimetry (1993),
http://radiationdosimetry.org/ncs/documents/ncs-6-
[23] K. Cranley, B.J. Gilmore, G.W.A. Fogarty, and I. Desponds, Catalogue of Diagnostic X-ray Spectra and Other Data, Institute of Physics and Engineering in Medicine, Report No 78 (1997)
[24] V. Kopustinskas, Š. Meškinis, V. Grigaliūnas, S. Tamulevičius, M. Pucėta, G. Niaura, and R. Tomašiūnas, Ion beam synthesis of a-CNx:H films, Surf. Coat. Technol. 151–152, 180–183 (2002),
http://dx.doi.org/10.1016/S0257-8972(01)01573-0
[25] J.N. O'Dwyer and J.R. Tickner, Modelling diffractive X-ray scattering using EGS Monte Carlo code, Nucl. Instrum. Methods A 580, 127–129 (2007),
http://dx.doi.org/10.1016/j.nima.2007.05.050
[26] A. Tartari, A. Taibi, A. Bonifazzi, and C. Baraldi, Updating of form factors for coherent scattering of photons in tissues, Phys. Med. Biol. 47, 163–175 (2002),
http://dx.doi.org/10.1088/0031-9155/47/1/312
[27] O. Klein and Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Z. Phys. 52, 853–864 (1929),
http://dx.doi.org/10.1007/BF01366453
[28] B.K. Chatterjee, L.A. LaJohn, and S.C. Roy, Investigations on Compton scattering: New directions, Radiat. Phys. Chem. 75, 2165–2173 (2006),
http://dx.doi.org/10.1016/j.radphyschem.2006.03.073
[29] R. Ribberfors, Relationship of the relativistic Compton cross section to the momentum distribution of bound electron states, Phys. Rev. B 12, 2067–2074 (1975),
http://dx.doi.org/10.1103/PhysRevB.12.2067
[30] A. Bielajew, Fundamentals of the Monte Carlo method for neutral and charged particle transport (The University of Michigan, Ann Arbor, 2001),
[Researchgate]
[31] I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, Technical Report PIRS-701, 4th printing (National Research Council of Canada, Ottawa, 2003),
[Google Scholar]
[32] D.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, and E. Mainegra-Hing, NRC User Codes for EGSnrc, Technical Report PIRS-702 RevB (National Research Council of Canada, Ottawa, 2003),
[Google Scholar]
[33] M. Hoheisel, A. Korn, and J. Giersch, Influence of backscattering on the spatial resolution of semiconductor X-ray detectors, Nucl. Instrum. Methods A 546, 252–257 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.028
[34] L.M.N. Tavora and W.B. Gilboy, Study of Compton scattering signals in single sided imaging applications using Monte Carlo methods, Nucl. Instrum. Methods B 213, 155–161 (2004),
http://dx.doi.org/10.1016/S0168-583X(03)01595-7
[35] X.Y. Han, S.J. Zhuo, R.X. Shen, P.L. Wang, G.Y. Tao, and A. Ji, Calculation of the contribution of scattering effects to X-ray fluorescence intensity for coating samples, Spectrochim. Acta, Part B 61, 113–119 (2006),
http://dx.doi.org/10.1016/j.sab.2005.10.012
[36] D. Adlienė, J. Laurikaitienė, and S. Tamulevičius, Modification of amorphous DLC films induced by MeV photon irradiation, Nucl. Instrum. Methods B 266, 2788–2792 (2008),
http://dx.doi.org/10.1016/j.nimb.2008.03.118
[37] D. Adlienė, J. Laurikaitienė, M. Andrulevičius, A. Guobienė, Š. Meškinis, I. Cibulskaitė, and S. Tamulevičius, Mechanical properties of the X-ray irradiated DLC films containing SiOx as a constructive element for radiation detectors, Nucl. Instrum. Methods A 591, 188–191 (2008),
http://dx.doi.org/10.1016/j.nima.2008.03.053
[38] Relative Dielectric Constant εr (dk Value) of Liquids and Solid Materials (Endress and Hauser Messtechnik, Germany, 2000),
[PDF]
[39] Š. Meškinis, V. Kopustinskas, K. Šlapikas, S. Tamulevičius, A. Guobienė, R. Gudaitis, and V. Grigaliūnas, Ion beam synthesis of the diamond like carbon films for nanoimprint lithography applications, Thin Solid Films 515, 636–639 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.12.223
[40] M. Petasecca, F. Moscatelli, D. Passeri, G.U. Pignatel, and C. Scarpello, Numerical simulation of radiation damage effects in p-type silicon detectors, Nucl. Instrum. Methods A 563, 192–195 (2006),
http://dx.doi.org/10.1016/j.nima.2006.01.093
[41] Y. Qi, Z.G. Xiao, and T.D. Mantei, Comparison of silicon dioxide layers grown from three polymethylsiloxane precursors in high density oxygen plasma, J. Vac. Sci. Technol. A 21, 1064–1068 (2003),
http://dx.doi.org/10.1116/1.1577133