[PDF]
http://dx.doi.org/10.3952/lithjphys.48302
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 275–285 (2008)
MODELLING OF LOW ENERGY X-RAY
SCATTERING IN RADIATION DETECTORS WITH PROTECTIVE COATINGS
I. Cibulskaitė, D. Adlienė, and J. Laurikaitienė
Kaunas University of Technology, Studentų 50, LT-51368 Kaunas
E-mail: agnici@gmail.com
Received 21 February 2008; revised
25 July 2008; accepted 18 September 2008
The results of Monte Carlo
modelling of the low energy X-ray photon interaction processes in
Si detector coated by different materials of different thickness
are presented in this paper. Detector constructions containing
free standing polymer-like carbon coatings and diamond-like carbon
(DLC) coatings deposited onto detector surface were investigated.
Total and scatter doses in coated samples were calculated and the
influence of the coating material, composition, and thickness on
the X-ray photon scattering processes in Si detector was
evaluated. Evaluation of the detector construction with protective
coating corresponding to the lowest fraction of scattered photons
as compared to the calculated total dose is discussed in the
paper. It is shown that nanothick DLC coatings directly deposited
onto detector surface are promising materials in the construction
of radiation detectors due to their suitable mechanical
properties, resistance against chemicals and against radiation
damage of DLC films.
Keywords: scattered radiation,
detectors, Monte Carlo method, DLC films
PACS: 02.70.Uu, 29.40.Wk, 32.80.Cy, 81.05.Uw, 81.40.Wx
MAŽOS ENERGIJOS RENTGENO
SPINDULIUOTĖS SKLAIDOS MODELIAVIMAS DETEKTORIUOSE SU
APSAUGINĖMIS DANGOMIS
I. Cibulskaitė, D. Adlienė, J. Laurikaitienė
Kauno technologijos universitetas, Kaunas, Lietuva
Pristatomi mažų energijų Rentgeno fotonų
sąveikos su Si detektoriumi Monte Karlo modeliavimo rezultatai,
leidžiantys įvertinti įvairių detektoriaus apsauginių dangų įtaką
dozėms, registruojamoms detektoriuje. Tyrimui pasirinktos
detektorių konstrukcijos su apsauginėmis polimerinio tipo anglies
bei deimanto tipo anglies dangomis. Šiems detektoriams
apskaičiuotos pilnoji bei sklaidos dozės, pagal kurias vertinta
apsauginės dangos elementinės sudėties bei storio įtaka Rentgeno
fotonų sklaidai Si detektoriuje. Aptariamas detektorių su
apsaugine danga vertinimas pagal mažiausios išsklaidytų fotonų
frakcijos, lyginant su pilnąja sugertąja doze, kriterijų.
Parodyta, kad dėl išskirtinių mechaninių savybių, atsparumo
cheminiam poveikiui bei radiaciniams pažeidimams deimanto tipo
anglies dangos, tiesiogiai nusodintos ant detektoriaus paviršiaus,
yra perspektyvios konstruojant fotonų detektorius.
References / Nuorodos
[1] J. Van Dam, H. Bosmans, G. Marchal, and A. Wambersie,
Characteristics of dosemeter types for skin dose measurements in
practice, Radiat. Prot. Dosimetry 117, 185–189 (2006),
http://dx.doi.org/10.1093/rpd/nci713
[2] M. Hoheisel, Review of medical imaging with emphasis on X-ray
detectors, Nucl. Instrum. Methods A 563, 215–224 (2006),
http://dx.doi.org/10.1016/j.nima.2006.01.123
[3] S.W.S. McKeever, New millennium frontiers of luminescence
dosimetry, Radiat. Prot. Dosimetry 100, 27–32 (2002),
http://dx.doi.org/10.1093/oxfordjournals.rpd.a005865
[4] D.J. Peet and M.D. Pryor, Evaluation of a MOSFET radiation
sensor for the measurement of entrance surface dose in diagnostic
radiology, The Brit. J. Radiol. 72, 562–568 (1999),
http://dx.doi.org/10.1259/bjr.72.858.10560338
[5] Z. Yin, R.P. Hugtenburg, and A.H. Beddoe, Response corrections
for solid state detectors in megavoltage photon dosimetry, Phys.
Med. Biol. 49, 3691–3702 (2004),
http://dx.doi.org/10.1088/0031-9155/49/16/015
[6] A.B. Rosenfeld, D. Cutajar, M.L.F. Lerch, G. Takacs, I.M.
Cornelius, M. Yudelev, and M. Zaider, Miniature semiconductor
detectors for in vivo dosimetry, Radiat. Prot. Dosimetry 120,
48–55 (2006),
http://dx.doi.org/10.1093/rpd/nci645
[7] A.B. Rosenfeld, A. Wroe, I. Cornelius, and M. Carolan,
Verification of Monte Carlo simulations in hadron therapy with
non-tissue equivalent detectors, Radiat. Prot. Dosimetry 119,
487–490 (2006),
http://dx.doi.org/10.1093/rpd/nci618
[8] D. Adlienė and I. Cibulskaitė, Evaluation of scattered radiation
in mammography examination with Si detectors, Lithuanian J. Phys. 46,
261–270 (2006),
http://dx.doi.org/10.3952/lithjphys.46208
[9] J.M. Boon, K. Lindfors, K. Cooper, and J.A. Seibert, Scatter /
primary in mammography: Comprehensive results, Med. Phys. 27,
2408–2416 (2000),
http://dx.doi.org/10.1118/1.1312812
[10] N. Meric, D. an Bor, and N. Büget, Determination of scatter
fractions of some materials by experimental studies and Monte Carlo
calculations, Appl. Radiat. Isotopes 51, 161–167 (1999),
http://dx.doi.org/10.1016/S0969-8043(98)00160-2
[11] M. Bucciolini, F.B. Buonamici, S. Mazzocchi, C.D. Angelis, S.
Onori, and G.A. Cirrone, Diamond detector versus silicon diode and
ion chamber in photon beams of different energy and field size, Med.
Phys. 30, 2149–2154 (2003),
http://dx.doi.org/10.1118/1.1591431
[12] G.A.P. Cirrone, G. Cuttone, L. Raffaele, M.G. Sabini, C. De
Angelis, S. Onori, M. Pacilio, M. Bucciolini, M. Bruzzi, and S.
Sciortino, Natural and CVD type diamond detectors as dosimeters in
hadrontherapy applications, Nucl. Phys. B 125, 179–183
(2003),
http://dx.doi.org/10.1016/S0920-5632(03)90987-X
[13] S. Tamulevičius, V. Kopustinskas, Š. Meškinis, and L. Augulis,
Mechanical properties of ion beam deposited carbon films, Carbon 42,
1085–1088 (2004),
http://dx.doi.org/10.1016/j.carbon.2003.12.040
[14] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. 37,
129–281 (2002),
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[15] F. Atchison, T. Brys, M. Daum, P. Fierlinger, A. Foelske, et
al., Structual characterization of diamond-like carbon films for
ultracold neutron applications, Diamond Rel. Mater. 16,
334–341 (2007),
http://dx.doi.org/10.1016/j.diamond.2006.06.008
[16] X.Y. Han, S.J. Zhuo, R.X. Shen, P.L. Wang, G.Y. Tao, and A. Ji,
Calculation of the contribution of scattering effects to X-ray
fluorescence intensity for coating samples, Spectrochim. Acta, Part
B 61, 113–119 (2006),
http://dx.doi.org/10.1016/j.sab.2005.10.012
[17] I. Cibulskaitė and D. Adlienė, Comparison of Monte Carlo
simulated scattering processes of low energy photons in radiation
detector materials, Nucl. Instrum. Methods A 580, 73–76
(2007),
http://dx.doi.org/10.1016/j.nima.2007.05.041
[18] S.R. Amendolia, M.G. Bisogni, P. Delogu, M.E. Fantacci, M.
Novelli, P. Oliva, M. Quattrocchi, V. Rosso, A. Stefanini, and S.
Zucca, Experimental study of Compton scattering reduction in digital
mammography imaging, IEEE Trans. Nucl. Sci. 49, 2361–2365
(2002),
http://dx.doi.org/10.1109/TNS.2002.803816
[19] P. Fajardo, V. Honkimäki, T. Buslaps, and P. Suortti,
Experimental validation of multiple scattering calculations with
high energy X-ray photons, Nucl. Instrum. Methods B 134,
337–345 (1998),
http://dx.doi.org/10.1016/S0168-583X(97)00736-2
[20] European Protocol on Dosimetry in Mammography, European
Commisson Report EUR 16263EN, ISBN 92-827-7289-6 (European
Commission, Luxemburg),
[PDF]
[21] D.R. Dance, C.L. Skinner, K.C. Young, J.R. Beckett, and C.J.
Kotre, Additional factors for estimation of mean glandular breast
ude using the UK mammography dosimetry protocol, Phys. Med. Biol. 45,
3225–3240 (2000),
http://dx.doi.org/10.1088/0031-9155/45/11/308
[22] Dosimetric Aspects of Mammography, Report 6 of the
Netherlands Commission on Radiation Dosimetry (1993),
http://radiationdosimetry.org/ncs/documents/ncs-6-
[23] K. Cranley, B.J. Gilmore, G.W.A. Fogarty, and I. Desponds, Catalogue
of Diagnostic X-ray Spectra and Other Data, Institute of
Physics and Engineering in Medicine, Report No 78 (1997)
[24] V. Kopustinskas, Š. Meškinis, V. Grigaliūnas, S. Tamulevičius,
M. Pucėta, G. Niaura, and R. Tomašiūnas, Ion beam synthesis of a-CNx:H
films, Surf. Coat. Technol. 151–152, 180–183 (2002),
http://dx.doi.org/10.1016/S0257-8972(01)01573-0
[25] J.N. O'Dwyer and J.R. Tickner, Modelling diffractive X-ray
scattering using EGS Monte Carlo code, Nucl. Instrum. Methods A 580,
127–129 (2007),
http://dx.doi.org/10.1016/j.nima.2007.05.050
[26] A. Tartari, A. Taibi, A. Bonifazzi, and C. Baraldi, Updating of
form factors for coherent scattering of photons in tissues, Phys.
Med. Biol. 47, 163–175 (2002),
http://dx.doi.org/10.1088/0031-9155/47/1/312
[27] O. Klein and Y. Nishina, Über die Streuung von Strahlung durch
freie Elektronen nach der neuen relativistischen Quantendynamik von
Dirac, Z. Phys. 52, 853–864 (1929),
http://dx.doi.org/10.1007/BF01366453
[28] B.K. Chatterjee, L.A. LaJohn, and S.C. Roy, Investigations on
Compton scattering: New directions, Radiat. Phys. Chem. 75,
2165–2173 (2006),
http://dx.doi.org/10.1016/j.radphyschem.2006.03.073
[29] R. Ribberfors, Relationship of the relativistic Compton cross
section to the momentum distribution of bound electron states, Phys.
Rev. B 12, 2067–2074 (1975),
http://dx.doi.org/10.1103/PhysRevB.12.2067
[30] A. Bielajew, Fundamentals of the Monte Carlo method for neutral
and charged particle transport (The University of Michigan,
Ann Arbor, 2001),
[Researchgate]
[31] I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System:
Monte Carlo Simulation of Electron and Photon Transport,
Technical Report PIRS-701, 4th printing (National Research Council
of Canada, Ottawa, 2003),
[Google
Scholar]
[32] D.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, and
E. Mainegra-Hing, NRC User Codes for EGSnrc, Technical
Report PIRS-702 RevB (National Research Council of Canada, Ottawa,
2003),
[Google
Scholar]
[33] M. Hoheisel, A. Korn, and J. Giersch, Influence of
backscattering on the spatial resolution of semiconductor X-ray
detectors, Nucl. Instrum. Methods A 546, 252–257 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.028
[34] L.M.N. Tavora and W.B. Gilboy, Study of Compton scattering
signals in single sided imaging applications using Monte Carlo
methods, Nucl. Instrum. Methods B 213, 155–161 (2004),
http://dx.doi.org/10.1016/S0168-583X(03)01595-7
[35] X.Y. Han, S.J. Zhuo, R.X. Shen, P.L. Wang, G.Y. Tao, and A. Ji,
Calculation of the contribution of scattering effects to X-ray
fluorescence intensity for coating samples, Spectrochim. Acta, Part
B 61, 113–119 (2006),
http://dx.doi.org/10.1016/j.sab.2005.10.012
[36] D. Adlienė, J. Laurikaitienė, and S. Tamulevičius, Modification
of amorphous DLC films induced by MeV photon irradiation, Nucl.
Instrum. Methods B 266, 2788–2792 (2008),
http://dx.doi.org/10.1016/j.nimb.2008.03.118
[37] D. Adlienė, J. Laurikaitienė, M. Andrulevičius, A. Guobienė, Š.
Meškinis, I. Cibulskaitė, and S. Tamulevičius, Mechanical properties
of the X-ray irradiated DLC films containing SiOx
as a constructive element for radiation detectors, Nucl. Instrum.
Methods A 591, 188–191 (2008),
http://dx.doi.org/10.1016/j.nima.2008.03.053
[38] Relative Dielectric Constant εr (dk Value) of
Liquids and Solid Materials (Endress and Hauser Messtechnik,
Germany, 2000),
[PDF]
[39] Š. Meškinis, V. Kopustinskas, K. Šlapikas, S. Tamulevičius, A.
Guobienė, R. Gudaitis, and V. Grigaliūnas, Ion beam synthesis of the
diamond like carbon films for nanoimprint lithography applications,
Thin Solid Films 515, 636–639 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.12.223
[40] M. Petasecca, F. Moscatelli, D. Passeri, G.U. Pignatel, and C.
Scarpello, Numerical simulation of radiation damage effects in p-type
silicon detectors, Nucl. Instrum. Methods A 563, 192–195
(2006),
http://dx.doi.org/10.1016/j.nima.2006.01.093
[41] Y. Qi, Z.G. Xiao, and T.D. Mantei, Comparison of silicon
dioxide layers grown from three polymethylsiloxane precursors in
high density oxygen plasma, J. Vac. Sci. Technol. A 21,
1064–1068 (2003),
http://dx.doi.org/10.1116/1.1577133