[PDF]
http://dx.doi.org/10.3952/lithjphys.48306
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 287–297 (2008)
SCANNING PROBE MICROSCOPIC AND
OPTICAL DETECTION OF DNA INTEGRATION WITHIN MULTICOMPONENT
STRUCTURES ON Si SURFACES
V. Bukauskas, J. Babonas, A. Rėza, J. Sabataitytė, I. Šimkienė,
and A. Šetkus
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: setkus@pfi.lt
Received 9 May 2008; revised 13
June 2008; accepted 18 September 2008
Self-arrangement of DNA based
structures on clean mica and modified Si surfaces is investigated
by means of scanning probe microscope (SPM) and spectroscopic
ellipsometry (SE) method. DNA strands are deposited from a
colloidal solution on solid surfaces at room temperature. Surfaces
of solid substrates and biomolecular structures are additionally
modified by Ag nanoparticles. The self-arranged surface structures
are visualized by SPM. The effect of the multicomponent structures
on the optical response of complex hybrid structures is studied.
Changes in the optical response of the hybrid samples are related
to the contributions of self-assembled DNA-based structures and Ag
nanoparticles on the Si surfaces. Binding of Ag nanoparticles to
the DNA strands and formation of well-ordered structures on the
surfaces with DNA are discussed.
Keywords: biomolecular structures,
surface, self-assemblage, optical properties, scanning probe
microscopy
PACS: 68.37.Ps, 78.68.+m, 81.07.Pr, 81.16.Dn
DNR SĄSAJOS SU
DAUGIAKOMPONENČIAIS DARINIAIS Si PAVIRŠIUJE TYRIMAS
SKENUOJANČIOJO ZONDO MIKROSKOPU IR OPTINIAIS METODAIS
V. Bukauskas, J. Babonas, A. Rėza, J. Sabataitytė, I.
Šimkienė, A. Šetkus
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Darinių su DNR molekulėmis susitvarkymas ant
švaraus žėručio ir specialiai apdoroto Si paviršių yra tirtas
skenuojančiojo zondo mikroskopu (SZM) ir spektroskopine
elipsometrija (SE). Kambario temperatūroje DNR junginiai
nusodinami ant kietojo paviršiaus iš koloidinių tirpalų. Kietieji
padėklai su biomolekulėmis taip pat padengiami Ag nanodalelių
sluoksniu. Savitvarkių darinių paviršiaus atvaizdas gaunamas
naudojant įvairius SZM režimus. Taip pat tiriama optinio atsako
priklausomybė nuo daugiakomponenčio hibridinio darinio sandaros.
Specifiniai pokyčiai, stebimi optiniame atsake, atsiranda dėl DNR
molekulių ir Ag nanodalelių susijungimo savitvarkiame hibridiniame
darinyje ant Si paviršiaus. Aptariamos tvarkingai ant kietojo
paviršiaus susirikiavusių darinių charakteristikos, siejant jas su
DNR ir Ag nanodalelių susijungimo ypatumais.
References / Nuorodos
[1] I. Willner, B. Willner, and E. Katz, Biomolecule–nanoparticle
hybrid systems for bioelectronic applications, Bioelectrochem. 70,
2–11 (2007),
http://dx.doi.org/10.1016/j.bioelechem.2006.03.013
[2] T. Liedl, T.L. Sobey, and F.C. Simmel, DNA-based nanodevices,
Nanotoday 2, 36–41 (2007),
http://dx.doi.org/10.1016/S1748-0132(07)70057-9
[3] F.L. Yap and Y. Zhang, Protein and cell micropatterning and its
integration with micro / nanoparticles assembly, Biosensors
Bioelectron. 22, 775–788 (2007),
http://dx.doi.org/10.1016/j.bios.2006.03.016
[4] Q. Huo, A perspective on bioconjugated nanoparticles and quantum
dots, Colloids Surf. B 59, 1–10 (2007),
http://dx.doi.org/10.1016/j.colsurfb.2007.04.019
[5] H.R. Luckarift, S. Balasubramanian, S. Paliwal, G.R. Johnson,
and A.L. Simonian, Enzyme-encapsulated silica monolayers for rapid
functionalization of a gold surface, Colloids Surf. B 58,
28–33 (2007),
http://dx.doi.org/10.1016/j.colsurfb.2006.08.013
[6] D.N. Woolfson and M.G. Ryadnov, Peptide-based fibrous
biomaterials: Some things old, new and borrowed, Curr. Opinion Chem.
Biol. 10, 559–567 (2006),
http://dx.doi.org/10.1016/j.cbpa.2006.09.019
[7] A. Wu, W. Cheng, Z. Li, J. Jiang, and E. Wang,
Electrostatic-assembly metallized nanoparticles network by DNA
template, Talanta 68, 693–699 (2006),
http://dx.doi.org/10.1016/j.talanta.2005.05.024
[8] C. Peng, Yo. Song, G. Wei, W. Zhang, Z. Li, and W.-F. Dong,
Self-assembly of λ-DNA networks/Ag nanoparticles: Hybrid
architecture and active-SERS substrate, J. Colloid Interface Sci. 317,
183–190 (2008),
http://dx.doi.org/10.1016/j.jcis.2007.09.017
[9] V. Lavalley, P. Chaudouet, and V. Stambouli, An atomic force
microscopy study of DNA hairpin probes monolabelled with gold
nanoparticle: Grafting and hybridization on oxide thin films, Surf.
Sci. 601, 5424–5432 (2007),
http://dx.doi.org/10.1016/j.susc.2007.09.015
[10] S. Basu, S. Jana, S. Pande, and T. Pal, Interaction of DNA
bases with silver nanoparticles: Assembly quantified through SPRS
and SERS, J. Colloid Interface Sci. 321, 288–293 (2008),
http://dx.doi.org/10.1016/j.jcis.2008.02.015
[11] A. Mougin, V.G. Babak, F. Palmino, E. Beche, F. Baros, D.J.
Hunting, L. Sanche, and M. Fromm, TDAB-induced DNA plasmid
condensation on the surface of a reconstructed boron doped silicon
substrate, Surf. Sci. 602, 142–150 (2008),
http://dx.doi.org/10.1016/j.susc.2007.09.058
[12] K. Kalyanasundaram and M. Grätzel, Applications of
functionalized transition metal complexes in photonic and
optoelectronic devices, Coord. Chem. Rev. 177, 347–414
(1998),
http://dx.doi.org/10.1016/S0010-8545(98)00189-1
[13] J. Kobayashi, T. Hinoue, and H. Watarai, Study of adsorption of
water-soluble porphyrin at glass–solution interface in the presence
of cationic surfactant admicelles by means of total internal
reflection spectroscopy, Bull. Chem. Soc. Jpn. 71, 1847–1855
(1998),
http://dx.doi.org/10.1246/bcsj.71.1847
[14] S.B. Lei, J. Wang, Y.H. Dong, C. Wang, L.J. Wan, and C.L. Bai,
STM and XRD studies of the adsorption and assembling structures of
phthalocyanine and porphyrin, Surf. Interface Anal. 34,
767–771 (2002),
http://dx.doi.org/10.1002/sia.1407
[15] Q. Weiping, X. Bin, Y. Danfeng, L. Yihua, W. Lei, W. Chunxiao,
Y. Fang, L. Zhuhong, and W. Lu, Site-directed immobilization if
immunoglobulin G on 3-aminopropyltriethoxysilane modified silicon
wafer surfaces, Mater. Sci. Eng. C 8–9, 475–480 (1999),
http://dx.doi.org/10.1016/S0928-4931(99)00015-6
[16] R. Šustavičiūtė, I. Šimkienė, J. Sabataitytė, A. Rėza, A.
Kindurys, R. Tamaševičius, and J. Babonas, Formation and
investigation of porous SiO2 films on Si, Lithuanian J. Phys. 44,
465–476 (2004),
http://dx.doi.org/10.3952/lithjphys.44608
[17] F.J. Giessibl, Advances in atomic force microscopy, Rev. Mod.
Phys. 75, 949–983 (2003),
http://dx.doi.org/10.1103/RevModPhys.75.949
[18] B. Anczykowski, B. Gotsmann, H. Fuchs, J.P. Cleveland, and V.B.
Elings, How to measure energy dissipation in dynamic mode atomic
force microscopy, Appl. Surf. Sci. 140, 376–382 (1999),
http://dx.doi.org/10.1016/S0169-4332(98)00558-3
[19] M. Argaman, R. Golan, N.H. Thomson, and H.G. Hansma, Phase
imaging of moving DNA molecules and DNA molecules replicated in the
atomic force microscope, Nucleic Acids Res. 25, 4379–4384
(1997),
http://dx.doi.org/10.1093/nar/25.21.4379
[20] B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L.P.
DeMejo, Identification of electrostatic and van der Waals
interaction forces between a micrometer-size sphere and a flat
substrate, Phys. Rev. B 53, 8065–8070 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.8065
[21] M. Lee, W. Lee, and F.B. Prinz, Geometric artefact suppressed
surface potential measurements, Nanotechnol. 17, 3728–3733
(2006),
http://dx.doi.org/10.1088/0957-4484/17/15/019
[22] R.W. Stark, N. Naujoks, and A. Stemmer, Multifrequency
electrostatic force microscopy in the repulsive regime, Nanotechnol.
18, 065502-1–7 (2007),
http://dx.doi.org/10.1088/0957-4484/18/6/065502
[23] G.-J. Babonas, A. Niilisk, A. Reza, A. Matulis, and A.
Rosental, Spectroscopic ellipsometry of TiO2/Si, Proc.
SPIE 5122, 50–55 (2003),
http://dx.doi.org/10.1117/12.515700
[24] R. Tamaševičius, I. Šimkienė, A. Rėza, I. Blažys, and G.J.
Babonas, Magnetic circular dichroism of iron porphyrin, Proc. SPIE 6596,
65961E-1–6 (2007),
http://dx.doi.org/10.1117/12.726514
[25] D. Bedeaux and J. Vlieger, Optical Properties of Surfaces
(Imperial College Press, Singapore, 2004),
http://dx.doi.org/10.1142/p327
[26] SOPRA database,
http://www.sopra-sa.com/
[27] M. Kobayashi, K. Sumitomo, and K. Torimitsu, Real-time imaging
of DNA–streptavidin complex formation in solution using a high-speed
atomic force microscope, Ultramicroscopy 107, 184–190
(2007),
http://dx.doi.org/10.1016/j.ultramic.2006.07.008
[28] F. Moreno-Herrero, P. Herrero, F. Moreno, J. Colchero, C.
Gomez-Navarro, J. Gomez-Herrero, and A.M. Bar, Topographic
characterization and electrostatic response of M-DNA studied by
atomic force microscopy, Nanotechnol. 14, 128–133 (2003),
http://dx.doi.org/10.1088/0957-4484/14/2/305
[29] B. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim,
Characterization of the optical properties of silver nanoparticle
films, Nanotechnol. 18, 075706-1–5 (2007),
http://dx.doi.org/10.1088/0957-4484/18/7/075706
[30] U. Kreibig and M. Vollmer, Optical Properties of Metal
Clusters (Springer, Berlin, 1995),
http://dx.doi.org/10.1007/978-3-662-09109-8
[31] B.I. Kankia, Optical absorption assay for strand-exchange
reactions in unlabeled nucleic acids, Nucleic Acid Res. 32,
e154-1–6 (2004),
http://dx.doi.org/10.1093/nar/gnh152
[32]
N.K. Sahoo, S. Thakur, M. Senthilkumar, D. Bhattacharyya, and N.C.
Das, Reactive electron beam evaporation of gadolinium oxide optical
thin films for ultraviolet and deep ultraviolet laser wavelengths,
Thin Solid Films 440, 155–168 (2003),
http://dx.doi.org/10.1016/S0040-6090(03)00678-3
[33] N.K. Sahoo, S. Thakur, and R.B. Tokas, Fractals and
superstructures in gadolinia thin film morphology: Influence of
process variables on their characteristic parameters, Thin Solid
Films 503, 85–95 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.11.107
[34] S. Jakops, A. Duparre, and H. Truckenbrodt, AFM and light
scattering measurements of optical thin films for applications in
the UV spectral region, Int. J. Machine Tools Manufact. 38,
733–739 (1998),
http://dx.doi.org/10.1016/S0890-6955(97)00125-9
[35] X. Kuang and Z. Zhu, Fractal analysis and simulation of surface
roughness of ceramic particles for composite materials, Appl.
Composite Mater. 4, 69–81 (1997),
http://dx.doi.org/10.1023/A:1008824606064