[PDF]
http://dx.doi.org/10.3952/lithjphys.48308
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 265–273 (2008)
RESISTANCE OF AIRBORNE FUNGAL
PROPAGULES TO ULTRAVIOLET IRRADIATION: LABORATORY STUDY
V. Ulevičiusa, D. Pečiulytėb, K. Plauškaitėa,
and N. Špirkauskaitėa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt
bInstitute of Botany, Žaliųjų ežerų 49, LT-08406
Vilnius, Lithuania
Received 30 July 2008; accepted 19
September 2008
The influence of ultraviolet (UV)
radiation on fungi Aspergillus niger Tiegh. isolate OG168,
Paecilomyces puntonii (Vuill.) Nann. isolate OG68, and Penicillium
expansum Link isolate PO88 was studied under laboratory
conditions. A test system was developed for this study. An aerosol
chamber provided a dust-free space of 1.5 m3. The
source of ultraviolet rays was an UV lamp (DPT 220, 240–320 nm, 15
W). Fungal propagules were injected into the UV exposed chamber
space from an external bioaerosol generator. Aerosols from the
aerosol chamber after irradiation to UV were sampled into an
impinger AGI-30 and measured with the optical aerosol spectrometer
LAS-15M (Institute of Physics, Lithuania). The changes in fungi
survival caused by exposure to UV radiation were evaluated by
determining their relative recovery. The laboratory study
indicated that the fungal propagules responded to UV radiation
distinctively. P. puntonii propagules were injured without
possibility to repair. On the contrary, P. expansum
propagules repaired after a long enough exposure to UV radiation,
but this ability was limited. The stressed A. niger propagules
recovered after the 80 min exposure to UV radiation and the
relative recovery reached a plateau. The mutagenic effects of UV
light on tested fungi have shown that frequent occurrence of
different morphological mutants was detected after the 30 min
exposure of conidia. The mean geometrical diameter of fungal
propagules exposed to UV irradiation in the aerosol chamber was in
the range of 2.5 to 2.8 μm.
Keywords: aerosol chamber, fungal
propagules, relative recovery, mutation, UV radiation
PACS: 92.60.Mt, 92.20.Bk, 87.19.xg
MIKROMICETŲ AEROZOLIO ATSPARUMAS
ULTRAVIOLETINEI SPINDULIUOTEI: KAMERINIAI TYRIMAI
V. Ulevičiusa, D. Pečiulytėb, K.
Plauškaitėa, N. Špirkauskaitėa
aFizikos institutas, Vilnius, Lietuva
bBotanikos institutas, Vilnius, Lietuva
Tirtas ultravioletinės (UV) spinduliuotės
poveikis Aspergillus niger Tiegh (OG168), Paecilomyces
puntonii (Vuill.) Nann. (OG68) ir Penicillium expansum
Link (PO88) mikromicetų pradams, panaudojus aerozolio
technologiją. Tyrimai atlikti sukonstruotoje eksperimentinėje 1,5
m3 aerozolio kameroje. Kamera buvo užpildoma
mikromicetų pradais, generuojamais bioaerozolių generatoriumi. Jie
buvo veikiami skirtingos trukmės (iki 160 min) ultravioletine
spinduliuote. Bandiniai iš kameros rinkti į sterilų vandenį, kur
15 min intervalais optiniu aerozolio spektrometru LAS-15m (Fizikos
institutas) matuota mikromicetų pradų koncentracija ir dydžių
pasiskirstymas. Mikromicetams auginti buvo naudota agarizuota
alaus misa. Mikromicetai auginti 7 dienas tamsoje, 25 ◦C
temperatūroje. Mikromicetų pradų gyvybingumas buvo vertinamas
pagal koncentracijų, išmatuotų aerozolio spektrometru vandens
terpėje, santykį. Nustatyta, kad P. puntonii pradų
pažaidos negrįžtamos: dauguma jų žuvo paveikus UV spinduliuote 20
min. P. expansum pradų gyvybingumas pradžioje sumažėjo,
bet po 60 min poveikio UV spinduliuote pradėjo didėti, o po 120
min – vėl mažėti. Šių mikromicetų pradų apsauginiai mechanizmai
nuo UV spinduliuotės buvo riboti. Po 80 min UV spinduliuotės
poveikio A. niger pradams jų gyvybingumas pradėjo didėti
ir vėliau mažai kito. A. niger pradų apsauginiai
mechanizmai nuo UV spinduliuotės buvo išvystyti geriausiai,
lyginant juos su P. expansum ir P. puntonii.
Daugiausia mikromicetų pradų mutacijų nustatyta paveikus UV
spinduliuote 30 min P. puntonii. Eksperimentinėje
aerozolio kameroje veikiamų UV spinduliuote mikromicetų pradų
vidutinis geometrinis skersmuo buvo nuo 2,2 iki 2,8 μm.
References / Nuorodos
[1] T. Yanagita, Natural Microbial Communities, Ecological and
Physiological Features (Japan Scientific Societies Press,
Tokyo and Springer Verlag, Berlin, 1990),
https://www.amazon.co.uk/Natural-Microbial-Communities-Ecological-Physiological/dp/0387520880/
[2] J. Rotem, B. Wooding, and D.E. Aulor, The role of solar
radiation, especially ultraviolet, in the mortality of fungal
spores, Phytopathol. 75, 510–514 (1985),
http://dx.doi.org/10.1094/Phyto-75-510
[3] Y. Tong and B. Lighthart, Solar radiation has a lethal effect on
natural populations of culturable outdoor atmospheric bacteria,
Atmos. Environ. 31, 897–900 (1996),
http://dx.doi.org/10.1016/S1352-2310(96)00235-X
[4] G.J. Herd, N.G. Muller, and J. Frick, Major role of
Ultraviolet-B in controlling bacterioplankton growth in the surface
layer of the ocean, Nature 361, 717–719 (1993),
http://dx.doi.org/10.1038/361717a0
[5] G. Ko, M.W. First, and H.A. Burge, Influence of relative
humidity on particle size and UV sensitivity of Serratia
marcescens and Mycobacterium bovis BCG aerosols,
Tuber. Lung Dis. 80, 217–228 (2000),
http://dx.doi.org/10.1054/tuld.2000.0249
[6] P.E. Hockberger, A history of ultraviolet photobiology for
humans, animals and microorganisms, Photochem. Photobiol. 76,
561–579 (2002),
http://dx.doi.org/10.1562/0031-8655(2002)076<0561:AHOUPF>2.0.CO;2
[7] E.C. Polard, S. Person, M. Rader, and D.J. Fluke, Relation of
ultraviolet light mutagenesis to a radiation-damage inducible system
in Escherichia coli, Radiat. Res. 72, 519–532
(1989),
http://dx.doi.org/10.2307/3574615
[8] T. Schwarz, UV light affects cells membrane and cytoplasmic
targets, J. Photochem. Photobiol. B 44, 91–96 (1998),
http://dx.doi.org/10.1016/S1011-1344(98)00126-2
[9] R.P. Sinha, M. Klisch, A. Gröniger, and D.P. Häder,
Mycosporine-like amino acids in the marine red alga Gracilaria
cornea – effects of UV and heat, Environ. Exp. Bot. 43,
33–43 (2000),
http://dx.doi.org/10.1016/S0098-8472(99)00043-X
[10] P.G. Ayres, T.S. Gunasekera, S. Rasanayagam, and N.D. Paul,
Effects of UV-B radiation on foliar saprophytes and pathogens, in: Fungi
and Environmental Change, eds. J.C. Frankland, N. Magan, G.M.
Gadd (Cambridge University Press, Cambridge, 1996), pp. 32–50,
http://dx.doi.org/10.1017/CBO9780511753190.004
[11] D. Peciulyte and V. Ulevicius, Effect of ultraviolet
irradiation on the germination, growth and variability of Paecilomyces
puntonii (Vuill.) Nonnizzi, Biol. 3–4, 68–74 (2000)
[12] D. Peciulyte and V. Ulevicius, Fungal response to ultraviolet
irradiation, Ecol. 3, 7–9 (1999)
[13] W. Bilger, T. Johnson, and U. Schreiber, UV-excited chlorophyll
fluorescence as a tool for the assessment of UV-protection by the
epidermis of plants, J. Exp. Bot. 52, 2007–2014 (2001),
http://dx.doi.org/10.1093/jexbot/52.363.2007
[14] T.M. Robson, V.A. Pancotto, S.D. Flint, C.L. Ballaré, O.E.
Sala, A.L. Scopel, and M.M. Caldwell, Six years of solar UV-B
manipulations affected growth of Sphagnum and vascular
plants in a Tierra del Fuego peatland, New Phytologist 160,
379–389 (2003),
http://dx.doi.org/10.1046/j.1469-8137.2003.00898.x
[15] A. Muela, J.M. Garcia-Bringas, I.I. Arana, and I.I. Barcina,
The effect of simulated solar radiation on escherichia coli:
The relative roles of UV-B, UV-A, and photosynthetically active
radiation, Microb. Ecol. 39, 65–71 (2000),
http://dx.doi.org/10.1007/s002489900181
[16] J. Peccia, H.M. Werth, S. Miller, and M. Hernandez, Effects of
relative humidity on the ultraviolet induced inactivation of
airborne bacteria, Aerosol Sci. Technol. 35, 728–740 (2001),
http://dx.doi.org/10.1080/02786820152546770
[17] M.L. Smith and A.J. Fornacwe, p-53-mediater protective
responses to UV irradiation, Proc. Natl. Acad. Sci. USA 94,
12255–12257 (1997),
http://dx.doi.org/10.1073/pnas.94.23.12255
[18] D.E. Aylor and S. Sanogo, Germinability of Venturia
inaequalis conidia exposed to sunlight, Phytopathol. 87,
628–633 (1997),
http://dx.doi.org/10.1094/PHYTO.1997.87.6.628
[19] E. Levetin, R. Shaughnessy, C.A. Rogers, and R. Scheir.
Effectiveness of germicidal UV radiation for reducing fungal
contamination within air-handling units, Appl. Environ. Microbiol. 67,
3712–3715 (2001),
http://dx.doi.org/10.1128/AEM.67.8.3712-3715.2001
[20] J. Rotem and H.J. Aust, The effect of UV and solar radiation
and temperature on survival of fungal propagules, J. Phytopathol. 133,
76–84 (1991),
http://dx.doi.org/10.1111/j.1439-0434.1991.tb00139.x
[21] K.H. Domsch, W. Gams, and T.H. Anderson, Compendium of Soil
Fungi (Academic Press, London, 1980),
http://www.apsnet.org/apsstore/shopapspress/pages/67692.aspx
[22] T. Reponen, K. Willeke, V. Ulevicius, S. Grinshpun, and J.
Donnelly, Techniques for dispersion of microorganisms into air,
Aerosol Sci. Technol. 27, 405–421 (1996),
http://dx.doi.org/10.1080/02786829708965481
[23] V. Ulevicius, K. Willeke, S. Grinshpun, J. Donnelly, X. Lin,
and G. Mainelis, Aerosol generation by bubbling liquid:
Characteristics and generator development, Aerosol Sci. Technol. 26,
175–190 (1996),
http://dx.doi.org/10.1080/02786829708965423
[24] C.L. Campbell and L.V. Madden, Introduction to Plant
disease Epidemiology (John Wiley & Sons, New York, 1990),
https://www.amazon.co.uk/Introduction-Plant-Disease-Epidemiology-Campbell/dp/0471832367/
[25] C.M. Ignoffo and C. Garcia, Influence of conidial colour on
inactivation of several entomogenous fungi by simulated sunlight,
Environ. Entomol. 21, 913–917 (1992),
http://dx.doi.org/10.1093/ee/21.4.913
[26] N.N. Zhdanova and A.I. Vasilevskaja, Melanin Containing
Fungi in the Extremal Conditions (Naukova Dumka, Kiev, 1988)
[in Russian]
[27] H.S. Mason, H.E. Ingram, and B. Allen, The free radical
property of melanins, Arch. Biochem. Biophys. 86, 230–255
(1960),
http://dx.doi.org/10.1016/0003-9861(60)90409-4
[28] A. Asthana and R.W. Tuveson, Effects of UV and phototoxins on
selected fungal pathogens of citrus, Int. J. Plant Sci. 153,
442–452 (1992),
http://dx.doi.org/10.1086/297050