[PDF]    http://dx.doi.org/10.3952/lithjphys.48311

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 231–242 (2008)


ULTRAFAST DYNAMICS OF PHOTOCHROMIC COMPOUND BASED ON OXAZINE RING OPENING
Martynas Barkauskasa, Vytas Martynaitisb, Algirdas Šačkusb, Ričardas Rotomskisa, Valdas Sirutkaitisa, and Mikas Vengrisa
aDepartment of Quantum Electronics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: martynas.barkauskas@ff.vu.lt
bInstitute of Synthetic Chemistry, Kaunas University of Technology, Radvilėnų 19, LT-50254 Kaunas, Lithuania

Received 17 August 2008; revised 17 September 2008; accepted 18 September 2008

We have performed a femtosecond pump-probe and nanosecond flash-photolysis measurements on a new type of photochromic molecules. These photochromes incorporate an indolo[2,1-b][1,3]benzoxazine ring system which opens upon UV light excitation and closes back within a few tens of ns. The details of ring opening and spectral properties of the photoproducts have been studied by investigating the spectral signatures of the model compounds representing separate structural parts of the photochromic switch. Comparison of the photoinduced dynamics of the model compounds and those of photochromic molecule has revealed a detailed molecular picture of the light-driven switch function.
Keywords: photochromism, pump-probe, flash-photolysis, indolo[2,1-b][1,3]benzoxazine, 4-nitrophenol, 4-nitrophenolate, 3H-indolium iodide, transient absorption, ring opening
PACS: 33.20.Kf, 82.53.Hn, 82.53.Uv


FOTOCHROMINIO JUNGINIO SU ATSIDARANČIU OKSAZINO ŽIEDU ULTRASPARČIOJI DINAMIKA
Martynas Barkauskasa, Vytas Martynaitisb, Algirdas Šačkusb, Ričardas Rotomskisa, Valdas Sirutkaitisa, Mikas Vengrisa
aVilniaus universitetas, Vilnius, Lietuva
bKauno technologijos universiteto Sintetinės chemijos institutas, Kaunas, Lietuva

Atlikti femtosekundiniai žadinimo ir zondavimo bei nanosekundiniai žybsnio fotolizės eksperimentai su naujai susintetintais molekuliniais fotojungikliais. Šiuose fotojungikliuose yra oksazino žiedas, kuris atsidaro molekulei sugėrus UV srities fotoną, o po to per keletą dešimčių nanosekundžių vėl užsidaro. Tirta žiedo atsidarymo dinamika ir spektrinės fotoproduktų savybės, lyginant laikinės spektroskopijos eksperimentus, atliktus su fotojungikliu, su eksperimentais, atliktais su modeliniais dariniais, atitinkančiais atskiras fotojungiklio grupes. Palyginus gautus rezultatus, pasiūlyta detali molekulinio mechanizmo, lemiančio fotochromiškumą, schema.


References / Nuorodos


[1] E. ter Meer, Über Dinitroverbindungen der Fettreihe, Justus Liebigs Ann. Chem. 181(1), 1–22 (1876),
http://dx.doi.org/10.1002/jlac.18761810102
[2] W. Wislicenus and F. Reitzenstein, Zur Kenntniss des Diketohydrindens, Justus Liebigs Ann. Chem. 277(3), 362–374 (1893),
http://dx.doi.org/10.1002/jlac.18932770316
[3] L. Harris, J. Kaminsky, and R.G. Simard, The absorption spectrum of malachite green leucocyanide and the mechanism of the dark reaction after photolysis, J. Am. Chem. Soc. 57(7), 1151–1154 (1935),
http://dx.doi.org/10.1021/ja01310a001
[4] R. Heiligman-Rim, Y. Hirshberg, and E. Fischer, Photochromism in spiropyrans. Part V. On the mechanism of phototransformation, J. Phys. Chem. 66(12), 2470–2477 (1962),
http://dx.doi.org/10.1021/j100818a036
[5] Photochromism, ed. G.H. Brown (Wiley, New York, 1971)
[6] H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier, Amsterdam, 1990),
http://store.elsevier.com/product.jsp?isbn=9780080538839
[7] Organic Photochromic and Thermochromic Compounds, eds. J.C. Crano and R.J. Guglielmetti (Plenum Press, New York, 1999),
http://www.springer.com/us/book/9780306458828
[8] Y.Y. Huang, W. Liang, J.K.S. Poon, Y. Xu, R.K. Lee, and A. Yariv, Spiro-oxazine photochromic fiber optical switch, Appl. Phys. Lett. 88(18), 181102-1–3 (2006),
http://dx.doi.org/10.1063/1.2200148
[9] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, and T. Kawai, Organic chemistry: A digital fluorescent molecular photoswitch, Nature 420(6917), 759–760 (2002),
http://dx.doi.org/10.1038/420759a
[10] I. Willner, Photoswitchable biomaterials: En route to optobioelectronic systems, Acc. Chem. Res. 30(9), 347–356 (1997),
http://dx.doi.org/10.1021/ar9700062
[11] O. Pieroni, A. Fissi, N. Angelini, and F. Lenci, Photoresponsive polypeptides, Acc. Chem. Res. 34(1), 9–17 (2001),
http://dx.doi.org/10.1021/ar990141+
[12] T. Hugel, N.B. Holland, A. Cattani, L. Moroder, M. Seitz, and H.E. Gaub, Single-molecule optomechanical cycle, Science 296(5570), 1103–1106 (2002),
http://dx.doi.org/10.1126/science.1069856
[13] H. Bouas-Laurent and H. Durr, Organic photochromism, Pure Appl. Chem. 73(4), 639–665 (2001),
http://dx.doi.org/10.1351/pac200173040639
[14] M. Irie, Photochromism: Memories and switches – Introduction, Chem. Rev. 100(5), 1683–1683 (2000),
http://dx.doi.org/10.1021/cr980068l
[15] A.A. Shachkus, Y.A. Degutis, and A.G. Urbonavichyus, Synthesis and study of 5a,6-dihydro-12H-indolo[2,1-b][1,3]-benzoxazines, Chem. Heterocyclic Compounds 25(5), 562–565 (1989) [in Russian: Khimiya Geterotsiklicheskikh Soedinenii 25(5), 672—676 (1989)],
http://dx.doi.org/10.1007/BF00482508
[16] M. Tomasulo, S. Sortino, and F.M. Raymo, A fast and stable photochromic switch based on the opening and closing of an oxazine ring, Org. Lett. 7(6), 1109–1112 (2005),
http://dx.doi.org/10.1021/ol050045a
[17] A. Shachkus, J. Degutis, and A. Jezerskaite, 5a,6-Dihydro-12H-indolo[2,1-b]-[1,3]-benzoxazines, in: Chemistry of Heterocyclic Compounds, Vol. 35, eds. J. Kovač and P. Zalupsky (Elsevier, Amsterdam, 1988) pp. 518–520,
https://www.amazon.co.uk/Chemistry-Heterocyclic-Compounds-Symposium-Proceedings/dp/044498917X/
[18] M. Tomasulo, S. Sortino, and F.M. Raymo, Bichromophoric photochromes based on the opening and closing of a single oxazine ring, J. Org. Chem. 73(1), 118–126 (2008),
http://dx.doi.org/10.1021/jo7017119
[19] M. Tomasulo, S. Sortino, and F.M. Raymo, Amplification of the coloration efficiency of photochromic oxazines, Advanced Mater. 20(4), 832–835 (2008),
http://dx.doi.org/10.1002/adma.200602843
[20] M. Tomasulo, S. Sortino, A.J.P. White, and F.M. Raymo, Fast and stable photochromic oxazines, J. Org. Chem. 70(20), 8180–8189 (2005),
http://dx.doi.org/10.1021/jo051417w
[21] I.H.M. van Stokkum, D.S. Larsen, and R. van Grondelle, Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta – Bioenergetics 1657(2–3), 82–104 (2004),
http://dx.doi.org/10.1016/j.bbabio.2004.04.011
[22] A.R. Holzwarth, Data analysis in time-resolved measurements, in: Biophysical Techniques in Photosynthesis, Vol. 3, eds. J. Amesz and A.J. Hoff (Kluwer Academic, Dordrecht, 1996) pp. 75–92,
http://dx.doi.org/10.1007/0-306-47960-5_5
[23] C.G. Xia, J. Peon, and B. Kohler, Femtosecond electron ejection in liquid acetonitrile: Evidence for cavity electrons and solvent anions, J. Chem. Phys. 117(19), 8855–8866 (2002),
http://dx.doi.org/10.1063/1.1513152
[24] X.Y. Chen and S.E. Bradforth, The ultrafast dynamics of photodetachment, Annu. Rev. Phys. Chem. 59, 203–231(2008),
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104702
[25] M.W. Allen, J.R. Unruh, B.D. Slaughter, S.J. Pyszczynski, T.R. Hellwig, T.J. Kamerzell, and C.K. Johnson, Spectroscopy and photophysics of indoline and indoline-2-carboxylic acid, J. Phys. Chem. A 107(30), 5660–5669 (2003),
http://dx.doi.org/10.1021/jp027813p
[26] R.L. McCreery, Calibration and validation, in: Raman Spectroscopy for Chemical Analysis, Vol. 157, Analytical Chemistry and its Applications, ed. J.D. Winefordner (Wiley Interscience, New York, 2000) pp. 251–291,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471252875.html
[27] M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, J. Kubicki, and A. Maciejewski, Artifacts in femtosecond transient absorption spectroscopy, Appl. Phys. B 74(1), 19–27 (2002),
http://dx.doi.org/10.1007/s003400100750
[28] D.V. Bent and E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan, J. Am. Chem. Soc. 97(10), 2612–2619 (1975),
http://dx.doi.org/10.1021/ja00843a004
[29] S.V. Jovanovic and S. Steenken, Substituent effects on the spectral, acid-base, and redox properties of indolyl radicals – a pulse-radiolysis study, J. Phys. Chem. 96(16), 6674–6679 (1992),
http://dx.doi.org/10.1021/j100195a029
[30] J. Peon, G.C. Hess, J.M.L. Pecourt, T. Yuzawa, and B. Kohler, Ultrafast photoionization dynamics of indole in water, J. Phys. Chem. A 103(14), 2460–2466 (1999),
http://dx.doi.org/10.1021/jp9840782
[31] V. Gulbinas, G. Kodis, S. Jursenas, L. Valkunas, A. Gruodis, J.C. Mialocq, S. Pommeret, and T. Gustavsson, Charge transfer induced excited state twisting of N,N-dimethylaminobenzylidene-1,3-indandione in solution, J. Phys. Chem. A 103(20), 3969–3980 (1999),
http://dx.doi.org/10.1021/jp9845468
[32] Q.K. Timerghazin and G.H. Peslherbe, Electronic structure of the acetonitrile and acetonitrile dimer anions: A topological investigation, J. Phys. Chem. B 112(2), 520–528 (2008),
http://dx.doi.org/10.1021/jp0774948
[33] I.A. Shkrob and M.C. Sauer, Electron localization in liquid acetonitrile, J. Phys. Chem. A 106(39), 9120–9131 (2002),
http://dx.doi.org/10.1021/jp0207580