[PDF]
http://dx.doi.org/10.3952/lithjphys.48402
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 313–318 (2008)
DIFFERENCE FREQUENCY GENERATION
BETWEEN THE OUTPUT WAVES OF THE PP-MgO:LN OPTICAL PARAMETRIC
OSCILLATOR
Viktoras Vaičikauskasa, Marius Kaučikasa,b,
and Zenonas Kuprionisb
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: m.kaucikas@ekspla.com
bEKSPLA, Savanorių 231, LT-02300 Vilnius, Lithuania
Received 10 July 2008; accepted 18
September 2008
The difference frequency
generation in the AgGaSe
2 crystal between output waves
of a periodically poled MgO doped lithium niobate (PP-MgO:LN)
optical parametric oscillator (OPO) is described in this paper.
The wavelength of the generated radiation is tunable from 6 to 13
m with the
average generated power in the range of several microwatts. The
set-up allows a rapid tuning of the wavelength in the limited
region of spectra without changing the temperature of the
PP-MgO:LN crystal. A typical spectral linewidth of 5 cm
–1
makes this source suitable for spectrometry of complex molecules
under atmospheric conditions. The measured spectrum of the acetone
vapour is presented to confirm this fact.
Keywords: nonlinear optics, optical
frequency converters, infrared sources
PACS: 42.65.-k, 42.79.Nv, 42.72.Ai
SKIRTUMINIO DAŽNIO GENERAVIMAS
SĄVEIKAUJANT PP-MgO:LN PARAMETRINIO ŠVIESOS GENERATORIAUS
SIGNALINEI IR ŠALUTINEI BANGOMS
Viktoras Vaičikauskasa, Marius Kaučikasa,b,
Zenonas Kuprionisb
aFizikos institutas, Vilnius, Lietuva
bUAB EKSPLA, Vilnius, Lietuva
Aprašomas skirtuminio dažnio generavimas AgGaSe
2
kristale tarp PP-MgO:LN parametrinio šviesos generatoriaus
signalinės ir šalutinės bangų. Generuojamos spinduliuotės bangos
ilgis yra derinamas nuo 6 iki 13
m, o
vidutinė jos galia siekia keletą milivatų. Aprašyta šaltinio
konfigūracija leidžia greitai keisti spinduliuotės bangos ilgį,
nekeičiant PP-MgO:LN kristalo temperatūros. Būdingasis
generuojamos spinduliuotės spektro plotis yra 5 cm
–1, o
tai leidžia naudoti šį šaltinį sudėtingų molekulių spektroskopijai
atmosferos sąlygomis. Tai iliustruojama acetono garų pavyzdžiu.
References / Nuorodos
[1] S. Haidar and H. Ito, Periodically poled lithium niobate optical
parametric oscillator pumped at 0.532 μm and use of its
output to produce tunable 4.6–8.3 μm in AgGaS2
crystal, Opt. Commun. 202, 227–231 (2002),
http://dx.doi.org/10.1016/S0030-4018(02)01096-9
[2] S. Haidar, Y. Sasaki, E. Niwa, K. Masumoto, and H. Ito,
Temperature tuning of 5–12 μm by difference frequency mixing
of OPO outputs in a AgGaS2 crystal, J. Phys. D 36,
1071–1074 (2003),
http://dx.doi.org/10.1088/0022-3727/36/9/304
[3] S.C. Pei, S.Y. Tu, and A.H. Kung, Mid-IR generation by
difference frequency mixing of two pulsed PPLN OPOs in ZnGeP2,
in: Quantum Electronics and Laser Science Conference, 2005,
Vol. 2 (Optical Society of America, 2005) pp. 791–793,
http://dx.doi.org/10.1109/QELS.2005.1548939
[4] K. Suizu, S. Haidar, T. Usami, K. Nakamura, K. Kawase, and H.
Ito, Nano-second continuous tunable 35–38 Thz wave generation by the
intra-cavity difference-frequency generation (iDFG) method, in:
Lasers and Electro-Optics, 2002 (Optical Society of America, 2002)
pp. 147–148,
http://dx.doi.org/10.1109/CLEO.2002.1033543
[5] S. Haidar and H. Ito, Injection-seeded optical parametric
oscillator for efficient difference frequency generation in mid-IR,
Opt. Commun. 171, 171–176 (1999),
http://dx.doi.org/10.1016/S0030-4018(99)00508-8
[6] K.S. Abedin, S. Haidar, Y. Konno, C. Takyu, and H. Ito,
Difference frequency generation of 5–18 μm in a AgGaSe2
crystal, Appl. Opt. 37, 1642–1646 (1998),
http://dx.doi.org/10.1364/AO.37.001642
[7] R. Utano and M.J. Ferry, 8–12 μm generation using difference
frequency generation in AgGaSe2 of a Nd :YAG pumped KTP
OPO, in: Advanced Solid State Lasers, eds. C. Pollock and W.
Bosenberg, Vol. 10 of OSA Trends in Optics and Photonics Series
(Optical Society of America, 1997), paper PC11, pp. 82–84,
https://www.amazon.co.uk/Advanced-Solid-State-Lasers-1997/dp/1557524688/
[8] A. Bianchi and M. Garbi, Down-conversion in the 4–18 μm
range with GaSe and AgGaSe2 nonlinear crystals, Opt.
Commun. 30, 122–124 (1979),
http://dx.doi.org/10.1016/0030-4018(79)90057-9
[9] S. Haidar, Y. Sasaki, E. Niwa, K. Masumoto, and H. Ito,
Electro-optic tuning of a periodically poled LiNbO3
optical parametric oscillator and mixing its output waves to
generate mid-IR tunable from 9.4 to 10.5 μm, Opt. Commun. 229,
325–330 (2004),
http://dx.doi.org/10.1016/j.optcom.2003.10.034
[10] C.S. Yu and A.H. Kung, Grazing-incidence periodically poled
LiNbO3 optical parametric oscillator, J. Opt. Soc. Am. B
16, 2233–2238 (1999),
http://dx.doi.org/10.1364/JOSAB.16.002233
[11] D. Roberts, Dispersion equations for nonlinear optical
crystals: KDP, AgGaSe2 and AgGaS2, Appl. Opt.
35, 4677–4688 (1996),
http://dx.doi.org/10.1364/AO.35.004677
[12] R.L. Sutherland, Handbook of Nonlinear Optics, 2nd ed.
(Marcel Dekker, 2003),
http://dx.doi.org/10.1201/9780203912539
[13] NIST Chemistry Webbook,
http://webbook.nist.gov/chemistry/
[14] C. Fischer, R. Bartlome, and M. Sigrist, The potential of
mid-infrared photoacoustic spectroscopy for the detection of various
doping agents used by athletes, Appl. Phys. B 85, 289–294
(2006),
http://dx.doi.org/10.1007/s00340-006-2367-y
[15] A. Miklos, C. Kim, W. Hsiang, G. Liang, A. Kung, A. Schmohl,
and P. Hess, Photoacoustic measurement of methane concentrations
with a compact pulsed optical parametric oscillator, Appl. Opt. 41,
2985–2993 (2002),
http://dx.doi.org/10.1364/AO.41.002985