[PDF]
http://dx.doi.org/10.3952/lithjphys.48403
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 325–331 (2008)
ANNEAL-INDUCED VARIATIONS OF THE
RECOMBINATION CHARACTERISTICS IN 2 MeV PROTON IRRADIATED Si
STRUCTURES
Jevgenij Višniakov, Tomas Čeponis, Eugenijus Gaubas, and Aurimas
Uleckas
Institute of Materials Science and Applied Research, Vilnius
University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: j.visniakov@post.skynet.lt, eugenijus.gaubas@ff.vu.lt
Received 17 July 2008; revised 25
September 2008; accepted 4 December 2008
Comparative study of the carrier
recombination and generation lifetime as well as reverse recovery
durations, dependent on proton irradiation fluence and annealing
regimes, has been performed on FZ silicon PIN diodes and wafer
structures. The samples were irradiated by 2 MeV protons with
fluences in the range of 7
1
0
12–7
10
14
p/cm
2. Carrier decay constituents and values of
recombination lifetime have been evaluated by employing a
microwave probed photoconductivity transient technique, while deep
level spectra ascribed to variations of generation lifetime have
been examined by exploiting capacitance deep level transient
spectroscopy (DLTS). Variations of six DLTS peaks are examined
under 24 h isochronal annealings in the range of temperatures from
80 to 320
∘C, to clarify threshold of annealing out of
the specific traps. Fluence-dependent variations of the effective
carrier recombination lifetime in wafer samples after isochronal
annealing indicate a weak change in density of the recombination
centres. The latter can be ascribed to cluster defects.
Fluence-dependent variations of the reverse recovery time (RRT) in
diodes after isochronal annealing imply the rearrangement of the
recombination and trapping centres, probably within a space charge
region (SCR) of clusters.
Keywords: carrier lifetime, reverse
recovery time, microwave probed photoconductivity, deep level
transient spectroscopy, proton irradiations, radiation defects
PACS: 61.72.J-, 61.82.Fk, 72.40.+w
REKOMBINACIJOS CHARAKTERISTIKŲ
KITIMAI IŠKAITINANT 2 MeV PROTONAIS ŠVITINTUS Si DARINIUS
Jevgenij Višniakov, Tomas Čeponis, Eugenijus Gaubas, Aurimas
Uleckas
Vilniaus universiteto Medžiagotyros ir taikomųjų mokslų
institutas, Vilnius, Lietuva
Ištirti rekombinacijos būdingųjų dydžių kitimai
Si padėkluose ir dioduose, apšvitintuose 2 MeV protonais ir
izochroniškai 24 val. iškaitintuose, keičiant temperatūrą 80–320 ∘C
ruože. Rekombinacijos parametrai tirti kombinuojant giliųjų
lygmenų talpinę spektroskopiją, mikrobangų sugerties relaksacijos
ir diodų perjungimo trukmės matavimų metodikas. Aptiktas
rekombinacijos trukmės didėjimas po iškaitinimų, kai pokyčių
vertės priklauso nuo apšvitos integrinio srauto, o šiluminės
emisijos, nulemiančios krūvininkų tankio relaksacijos generacinę
trukmę bei nuotėkio sroves, spektre aptikti žymūs pokyčiai,
sietini su taškinių defektų, priskirtinų vakansijoms ir jų
kompleksams, transformacijomis.
References / Nuorodos
[1] B.J. Baliga, Power Semiconductor Devices (PWS Publishing
Company, Boston, 1995),
https://www.amazon.co.uk/Power-Semiconductor-Devices-General-Engineering/dp/0534940986/
[2] J. Vobecký and P. Hazdra, Radiation-enhanced diffusion of
palladium for a local lifetime control in power devices, IEEE Trans.
Electron Devices 54, 1521–1526 (2007),
http://dx.doi.org/10.1109/TED.2007.896384
[3] R. Siemieniec, H.-J. Schulze, F.-J. Niedernostheide, W. Sudkamp,
and J. Lutz, Compensation and doping effects in heavily
helium-radiated silicon for power device applications,
Microelectron. J. 37, 204–212 (2006),
http://dx.doi.org/10.1016/j.mejo.2005.09.011
[4] J. Vobecký, P. Hazdra, and V. Záhlava, Helium irradiated
high-power P-i-N diode with low ON-state voltage drop, Solid-State
Electron. 47, 45–50 (2003),
http://dx.doi.org/10.1016/S0038-1101(02)00250-2
[5] P. Hazdra and V. Komarnitskyy, Lifetime control in silicon power
P-i-N diode by ion irradiation: Suppression of undesired leakage,
Microelectron. J. 37, 197–203 (2006),
http://dx.doi.org/10.1016/j.mejo.2005.09.010
[6] S.M. Kang, T.J. Eom, S.J. Kim, H.W. Kim, J.Y. Cho, and Chongmu
Lee, Reverse recovery characteristics and defect distribution in an
electron-irradiated silicon p-n junction diode, Mater. Chem. Phys. 84,
187–191 (2004),
http://dx.doi.org/10.1016/j.matchemphys.2003.11.030
[7] J. Višniakov, E. Gaubas, T. Čeponis, A. Uleckas, J. Raisanen,
and S. Vayrynen, Comparative investigation of recombination
characteristics in proton and electron irradiated Si structures,
Lith. J. Phys. 48, 137–144 (2008),
http://dx.doi.org/10.3952/lithjphys.48201
[8] E. Gaubas, A. Kadys, A. Uleckas, and J. Vaitkus, Investigation
of carrier recombination in Si heavily irradiated by neutrons, Acta
Phys. Pol. A 113, 837–840 (2008),
http://dx.doi.org/10.12693/APhysPolA.113.829
[9] J.H. Bleka, L. Murin, E.V. Monakhov, B.S. Avset, and B.G.
Svensson, On the identity of a crucial defect contribution to
leakage current in silicon particle detectors, Appl. Phys. Lett. 92,
132102 (2008),
http://dx.doi.org/10.1063/1.2896313
[10] M. Mikelsen, J.H. Bleka, J.S. Christensen, E.V. Monakhov, B.G.
Svensson, J. Harkonen, and B.S. Avset, Annealing of divacancy-oxygen
and vacancy-oxygen complexes in silicon, Phys. Rev. B 75,
155202 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.155202
[11] S. Watts, Radiation induced defects in silicon, in: High
Purity Silicon V, Eds. C.L. Claeys, P. Rai-Choudhury, M.
Watanabe, P. Stallhofer, and H.J. Dawson, Proc. Electrochem. Soc. PV
98-13, Boston, Massachusetts, Fall 1998,
https://www.amazon.co.uk/High-Purity-Silicon-Proceeding-98-13/dp/1566772079/
[12] S.J. Watts, J. Matheson, I.H. Hopkins-Bond, A. Holmes-Siedle,
A. Mohammadzadeh, and R. Pace, A new model for
generation-recombination in silicon depletion regions after neutron
irradiation, IEEE Trans. Nucl. Sci. 43, 2587–2594 (1996),
http://dx.doi.org/10.1109/23.556840
[13] K. Gill, G. Hall, and B. MacEvoy, Bulk damage effects in
irradiated silicon detectors due to clustered divacancies, J. Appl.
Phys. 82, 126–136 (1997),
http://dx.doi.org/10.1063/1.365790
[14] R.M. Fleming, C.H. Seager, D.V. Lang, P.J. Cooper, E. Bielejec,
and J.M. Campbell, Effects of clustering on the properties of
defects in neutron irradiated silicon, J. Appl. Phys. 102,
043711 (2007),
http://dx.doi.org/10.1063/1.2769783
[15] P.F. Ermolov, D.E. Karmanov, A.K. Leflat, V.M. Manankov, M.M.
Merkin, and E.K. Shabalina, Neutron induced effects conditioned by
the divacancy clusters with the tetravacancy core in a float zone
silicon, Semiconductors 36, 1114–1122 (2002),
http://dx.doi.org/10.1134/1.1513854
[16] P. Pellegrino, P. Lévêque, J. Lalita, A. Hallén, C. Jagadish,
and B.G. Svensson, Annealing kinetics of vacancy related defects in
low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64,
195211 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.195211
[17] I. Pintilie, E. Fretwurst, G. Lindström, and J. Stahl, Results
on defects induced by 60Co gamma irradiation in standard
and oxygen-enriched silicon, Nucl. Instrum. Methods A 514,
18–24 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.079
[18] V. Boisvert, J.L. Lindström, M. Moll, L.I. Murin, and I.
Pintilie, Characterization of oxygen dimer-enriched silicon
detectors, Nucl. Instrum. Methods A 552, 49–55 (2005),
http://dx.doi.org/10.1016/j.nima.2005.06.005