[PDF]    http://dx.doi.org/10.3952/lithjphys.48403

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 325–331 (2008)


ANNEAL-INDUCED VARIATIONS OF THE RECOMBINATION CHARACTERISTICS IN 2 MeV PROTON IRRADIATED Si STRUCTURES
Jevgenij Višniakov, Tomas Čeponis, Eugenijus Gaubas, and Aurimas Uleckas
Institute of Materials Science and Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: j.visniakov@post.skynet.lt, eugenijus.gaubas@ff.vu.lt

Received 17 July 2008; revised 25 September 2008; accepted 4 December 2008

Comparative study of the carrier recombination and generation lifetime as well as reverse recovery durations, dependent on proton irradiation fluence and annealing regimes, has been performed on FZ silicon PIN diodes and wafer structures. The samples were irradiated by 2 MeV protons with fluences in the range of 7\cdot1012–7\cdot1014 p/cm2. Carrier decay constituents and values of recombination lifetime have been evaluated by employing a microwave probed photoconductivity transient technique, while deep level spectra ascribed to variations of generation lifetime have been examined by exploiting capacitance deep level transient spectroscopy (DLTS). Variations of six DLTS peaks are examined under 24 h isochronal annealings in the range of temperatures from 80 to 320 C, to clarify threshold of annealing out of the specific traps. Fluence-dependent variations of the effective carrier recombination lifetime in wafer samples after isochronal annealing indicate a weak change in density of the recombination centres. The latter can be ascribed to cluster defects. Fluence-dependent variations of the reverse recovery time (RRT) in diodes after isochronal annealing imply the rearrangement of the recombination and trapping centres, probably within a space charge region (SCR) of clusters.
Keywords: carrier lifetime, reverse recovery time, microwave probed photoconductivity, deep level transient spectroscopy, proton irradiations, radiation defects
PACS: 61.72.J-, 61.82.Fk, 72.40.+w


REKOMBINACIJOS CHARAKTERISTIKŲ KITIMAI IŠKAITINANT 2 MeV PROTONAIS ŠVITINTUS Si DARINIUS
Jevgenij Višniakov, Tomas Čeponis, Eugenijus Gaubas, Aurimas Uleckas
Vilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas, Vilnius, Lietuva

Ištirti rekombinacijos būdingųjų dydžių kitimai Si padėkluose ir dioduose, apšvitintuose 2 MeV protonais ir izochroniškai 24 val. iškaitintuose, keičiant temperatūrą 80–320 C ruože. Rekombinacijos parametrai tirti kombinuojant giliųjų lygmenų talpinę spektroskopiją, mikrobangų sugerties relaksacijos ir diodų perjungimo trukmės matavimų metodikas. Aptiktas rekombinacijos trukmės didėjimas po iškaitinimų, kai pokyčių vertės priklauso nuo apšvitos integrinio srauto, o šiluminės emisijos, nulemiančios krūvininkų tankio relaksacijos generacinę trukmę bei nuotėkio sroves, spektre aptikti žymūs pokyčiai, sietini su taškinių defektų, priskirtinų vakansijoms ir jų kompleksams, transformacijomis.


References / Nuorodos


[1] B.J. Baliga, Power Semiconductor Devices (PWS Publishing Company, Boston, 1995),
https://www.amazon.co.uk/Power-Semiconductor-Devices-General-Engineering/dp/0534940986/
[2] J. Vobecký and P. Hazdra, Radiation-enhanced diffusion of palladium for a local lifetime control in power devices, IEEE Trans. Electron Devices 54, 1521–1526 (2007),
http://dx.doi.org/10.1109/TED.2007.896384
[3] R. Siemieniec, H.-J. Schulze, F.-J. Niedernostheide, W. Sudkamp, and J. Lutz, Compensation and doping effects in heavily helium-radiated silicon for power device applications, Microelectron. J. 37, 204–212 (2006),
http://dx.doi.org/10.1016/j.mejo.2005.09.011
[4] J. Vobecký, P. Hazdra, and V. Záhlava, Helium irradiated high-power P-i-N diode with low ON-state voltage drop, Solid-State Electron. 47, 45–50 (2003),
http://dx.doi.org/10.1016/S0038-1101(02)00250-2
[5] P. Hazdra and V. Komarnitskyy, Lifetime control in silicon power P-i-N diode by ion irradiation: Suppression of undesired leakage, Microelectron. J. 37, 197–203 (2006),
http://dx.doi.org/10.1016/j.mejo.2005.09.010
[6] S.M. Kang, T.J. Eom, S.J. Kim, H.W. Kim, J.Y. Cho, and Chongmu Lee, Reverse recovery characteristics and defect distribution in an electron-irradiated silicon p-n junction diode, Mater. Chem. Phys. 84, 187–191 (2004),
http://dx.doi.org/10.1016/j.matchemphys.2003.11.030
[7] J. Višniakov, E. Gaubas, T. Čeponis, A. Uleckas, J. Raisanen, and S. Vayrynen, Comparative investigation of recombination characteristics in proton and electron irradiated Si structures, Lith. J. Phys. 48, 137–144 (2008),
http://dx.doi.org/10.3952/lithjphys.48201
[8] E. Gaubas, A. Kadys, A. Uleckas, and J. Vaitkus, Investigation of carrier recombination in Si heavily irradiated by neutrons, Acta Phys. Pol. A 113, 837–840 (2008),
http://dx.doi.org/10.12693/APhysPolA.113.829
[9] J.H. Bleka, L. Murin, E.V. Monakhov, B.S. Avset, and B.G. Svensson, On the identity of a crucial defect contribution to leakage current in silicon particle detectors, Appl. Phys. Lett. 92, 132102 (2008),
http://dx.doi.org/10.1063/1.2896313
[10] M. Mikelsen, J.H. Bleka, J.S. Christensen, E.V. Monakhov, B.G. Svensson, J. Harkonen, and B.S. Avset, Annealing of divacancy-oxygen and vacancy-oxygen complexes in silicon, Phys. Rev. B 75, 155202 (2007),
http://dx.doi.org/10.1103/PhysRevB.75.155202
[11] S. Watts, Radiation induced defects in silicon, in: High Purity Silicon V, Eds. C.L. Claeys, P. Rai-Choudhury, M. Watanabe, P. Stallhofer, and H.J. Dawson, Proc. Electrochem. Soc. PV 98-13, Boston, Massachusetts, Fall 1998,
https://www.amazon.co.uk/High-Purity-Silicon-Proceeding-98-13/dp/1566772079/
[12] S.J. Watts, J. Matheson, I.H. Hopkins-Bond, A. Holmes-Siedle, A. Mohammadzadeh, and R. Pace, A new model for generation-recombination in silicon depletion regions after neutron irradiation, IEEE Trans. Nucl. Sci. 43, 2587–2594 (1996),
http://dx.doi.org/10.1109/23.556840
[13] K. Gill, G. Hall, and B. MacEvoy, Bulk damage effects in irradiated silicon detectors due to clustered divacancies, J. Appl. Phys. 82, 126–136 (1997),
http://dx.doi.org/10.1063/1.365790
[14] R.M. Fleming, C.H. Seager, D.V. Lang, P.J. Cooper, E. Bielejec, and J.M. Campbell, Effects of clustering on the properties of defects in neutron irradiated silicon, J. Appl. Phys. 102, 043711 (2007),
http://dx.doi.org/10.1063/1.2769783
[15] P.F. Ermolov, D.E. Karmanov, A.K. Leflat, V.M. Manankov, M.M. Merkin, and E.K. Shabalina, Neutron induced effects conditioned by the divacancy clusters with the tetravacancy core in a float zone silicon, Semiconductors 36, 1114–1122 (2002),
http://dx.doi.org/10.1134/1.1513854
[16] P. Pellegrino, P. Lévêque, J. Lalita, A. Hallén, C. Jagadish, and B.G. Svensson, Annealing kinetics of vacancy related defects in low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64, 195211 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.195211
[17] I. Pintilie, E. Fretwurst, G. Lindström, and J. Stahl, Results on defects induced by 60Co gamma irradiation in standard and oxygen-enriched silicon, Nucl. Instrum. Methods A 514, 18–24 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.079
[18] V. Boisvert, J.L. Lindström, M. Moll, L.I. Murin, and I. Pintilie, Characterization of oxygen dimer-enriched silicon detectors, Nucl. Instrum. Methods A 552, 49–55 (2005),
http://dx.doi.org/10.1016/j.nima.2005.06.005