[PDF]
http://dx.doi.org/10.3952/lithjphys.48404
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 319–323 (2008)
MAGNETIC CIRCULAR DICHROISM OF
OPAL CRYSTALS INFILTRATED WITH IRON PORPHYRIN*
Alfonsas Rėzaa,b, Irena Šimkienėa, Gintautas
Jurgis Babonasa, Rimantas Vaišnorasb, Dmitry
Kurdyukovc, and Valery Golubevc
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: jgb@pfi.lt
bVilnius Pedagogical University, Studentų 39,
LT-08106 Vilnius, Lithuania
cIoffe Physico-Technical Institute RAS, 194021 St.
Petersburg, Russia
Received 11 August 2008; accepted 4
December 2008
Synthetic opal crystals composed
of silica spheres of diameter ~250 nm were infiltrated with highly
concentrated (10 mM) buffered phosphate solution of iron porphyrin
(FeTPPS). Magnetic circular dichroism (MCD) in the visible
spectral range was investigated on hybrid samples immersed in
polar (ethanol) or non-polar (hexane, toluene) solutions and
situated in magnetic field. The MCD effect was observed in the
spectral region of 550–650 nm in the vicinity of Q-absorption
bands of FeTPPS. In 350 mT magnetic field the relative optical
transmission change by 2.4
10
–4
was determined at the Q
0-band of 0.3 mm thick
infiltrated opal sample. The dispersion-like lineshape of MCD
spectra corresponded to the A-type term. An average refraction
index and refraction index contrast of composite system was
controlled by immersion of infiltrated opal samples into various
liquids. As a result, the spectral position of the stop band in
opal photonic crystal was tuned with respect to FeTPPS absorption
bands. When the Q band of FeTPPS was within the stop band of opal,
the optical contrast of photonic crystal was changed by external
magnetic field due to the MCD effect.
Keywords: photonic band gap materials,
infiltrated opal, magnetooptical effects
PACS: 42.70.Qs, 78.20.Ls
*Results presented at the international conference Radiation
Interaction with Material and Its Use in Technologies 2008, 24–27
September 2008, Kaunas, Lithuania
GELEŽIES PORFIRINU INFILTRUOTŲ
OPALO KRISTALŲ MAGNETINIS APSKRITIMINIS DICHROIZMAS
Alfonsas Rėzaa,b, Irena Šimkienėa,
Gintautas Jurgis Babonasa, Rimantas Vaišnorasb,
Dmitry Kurdyukovc, Valery Golubevc
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus pedagoginis universitetas, Vilnius,
Lietuva
cJofės fizikos ir technikos institutas, Rusijos
mokslų akademija, Sankt Peterburgas, Rusija
Tirti sintetiniai opalo kristalai, sudaryti iš
~250 nm diametro silicio oksido sferų ir infiltruoti didelės
koncentracijos (10 mM) geležies porfirino (FeTPPS) buferiniu
fosfatiniu tirpalu. Magnetinis apskritiminis dichroizmas (magnetic
circular dichroism, MCD) buvo matuojamas regimajame spektro ruože,
įmerkus hibridinius bandinius magnetiniame lauke į polinį
(etanolio) ar nepolinį (heksano, tolueno) tirpalus. MCD efektas
stebėtas 550–650 nm spektro ruože FeTPPS Q sugerties juostų
srityje. Infiltruotų 0,3 mm storio opalo bandinių Q
0
juostoje santykinis optinio pralaidumo pokytis 350 mT magnetiniame
lauke buvo 2,4
10
–4.
Dispersijos tipo MCD spektro linijos forma atitiko magnetooptinį A
tipo narį. Kompozicinės sistemos vidutinis lūžio rodiklis ir lūžio
rodiklio kontrastas buvo valdomi, įmerkiant infiltruoto opalo
bandinius į įvairius skysčius. Dėl šios priežasties fotoninio
kristalo stop juostos spektrinė padėtis buvo keičiama FeTPPS
sugerties juostų atžvilgiu. Kai FeTPPS Q juosta sutapdavo su opalo
stop juosta, fotoninio kristalo optinis kontrastas dėl MCD efekto
buvo keičiamas išoriniu magnetiniu lauku.
References / Nuorodos
[1] S.G. Johnson and J.D. Joannopoulos, Photonic Crystals: The
Road from Theory to Practice (Springer, 2003),
http://www.springer.com/gp/book/9780792376095
[2] M.I. Samoilovich, S.M. Samoilovich, A.V. Guryanov, and M.Yu.
Tsvetkov, Artificial opal structures for 3D-optoelectronics,
Microelectron. Eng. 69, 237–247 (2003),
http://dx.doi.org/10.1016/S0167-9317(03)00303-4
[3] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, M. Baran,
R. Szymczak, R. Vaisnoras, L. Rasteniene, V. Golubev, and D.
Kurdyukov, Physical studies of porphyrin-infiltrated opal crystals,
Mater. Sci. Eng. C 27, 985–989 (2007),
http://dx.doi.org/10.1016/j.msec.2006.09.048
[4] Z.-Z. Gu, S. Hayami, Q.-B. Meng, T. Iyoda, A. Fujishima, and O.
Sato, Control of photonic band structure by molecular aggregates, J.
Am. Chem. Soc. 122, 10730–10731 (2000),
http://dx.doi.org/10.1021/ja001868s
[5] J. Li,W. Huang, and Y. Han, Tunable photonic crystals by mixed
liquids, Coll. Surf. A 279, 213–217 (2006),
http://dx.doi.org/10.1016/j.colsurfa.2006.01.006
[6] J. Sabataityte, I. Simkiene, A. Reza, G.-J. Babonas, R.
Vaisnoras, L. Rasteniene, D. Kurdyukov, and V. Golubev, Studies of
opal crystals infiltrated with iron porphyrin, Superlattices
Microst. 44, 664–669 (2008),
http://dx.doi.org/10.1016/j.spmi.2008.01.017
[7] M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P.B. Lim, H.
Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky,
Magnetophotonic crystals, J. Phys. D 39, R151–R161 (2006),
http://dx.doi.org/10.1088/0022-3727/39/8/R01
[8] M. Inoue, K. Arai, T. Fuji, and M. Abe, One-dimensional
magnetophotonic crystals, J. Appl. Phys. 85, 5768–5770
(1999),
http://dx.doi.org/10.1063/1.370120
[9] I.L. Lyubchanski, N.N. Dadoenkova, M.I. Lyubchanski, E.A.
Shapovalov, and Th. Rasing, Magnetic photonic crystals, J. Phys. D 36,
R277–R287 (2003),
http://dx.doi.org/10.1088/0022-3727/36/18/R01
[10] A. Gupta, A.Yu. Ganin, P. Sharma, V. Agnihotri, L.M. Belova,
K.V. Rao, M.E. Kozlov, A.A. Zakhidov, and R.H. Baughman, Synthetic
magnetic opals, Pramana 58, 1051–1059 (2002),
http://dx.doi.org/10.1007/s12043-002-0216-z
[11] P.N. Bartlett, M.A. Ghanem, I.S. El Hallag, P. de Groot, and A.
Zhukov, Electrochemical deposition of macroporous magnetic networks
using colloidal templates, J. Mater. Chem. 13, 2596–2602
(2003),
http://dx.doi.org/10.1039/b304496c
[12] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M.
Inoue, Three-dimensional magnetophotonic crystals based on
artificial opals, J. Appl. Phys. 95, 7336–7338 (2004),
http://dx.doi.org/10.1063/1.1676036
[13] H. Uchida, R. Fujikawa, T. Kodama, A.V. Baryshev, K. Nishimura,
and M. Inoue, Fabrication of 3D-magnetophotonic crystal with
artificial opal template prepared by gravitational sedimentation,
IEEE Trans. Magn. 41, 3526–3528 (2005),
http://dx.doi.org/10.1109/TMAG.2005.854962
[14] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, A.
Suchodolskis, M. Baran, R. Szymczak, R. Vaisnoras, L. Rasteniene, V.
Golubev, and D. Kurdyukov, Modification of photonic properties in
porphyrinin filtrated opal crystals, Photonics Nanost. Fund. Appl. 5,
125–128 (2007),
http://dx.doi.org/10.1016/j.photonics.2007.07.006
[15] R. Tamaševičius, I. Šimkienė, A. Rėza, I. Blažys, and G.J.
Babonas, Magnetic circular dichroism of iron porphyrin, Proc. SPIE 6596,
65961E (2007),
http://dx.doi.org/10.1117/12.726514
[16] P.J. Stephens, W. Suetaak, and P.N. Schatz, Magnetooptical
rotatory dispersion of porphyrins and phtalocyanines, J. Chem. Phys.
44, 4592–4602 (1966),
http://dx.doi.org/10.1063/1.1726677