[PDF]
http://dx.doi.org/10.3952/lithjphys.48406
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 357–366 (2008)
PERSISTENT ORGANIC POLLUTANTS IN
LITHUANIA: ASSESSMENT OF AIR AND SOIL CONTAMINATION
Audronė Milukaitėa, Jana Klánováb, Ivan
Holoubekb, Inga Rimšelytėa, and Kęstutis
Kvietkusa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: amk@ktl.mii.lt
bResearch Centre for Environmental Chemistry and
Ecotoxicology of Masaryk University, Kamenice 126/3, CZ-62500
Brno, Czech Republic
Received 8 September 2008; revised
14 November 2008; accepted 4 December 2008
Persistent organic pollutants
(POPs) such as polycyclic aromatic hydrocarbons (PAHs),
polychlorbiphenyls (PCBs), and pesticides (hexachlorcyclohexanes
(HCHs), dichlordiphenyltrichlormetilmetanes (DDTs)) were
investigated in the atmospheric air and soil at 5 sites of
Lithuania during March–August, 2006. POPs concentration at
different sampling sites varied in the range of 6.39–127.8 ng m–3,
0.017–0.440 ng m–3, 0.088–0.310 ng m–3, and
0.006–0.360 ng m–3 in the atmospheric air and in the
range of 29.5–529.3 ng g–1, 0.6–24.0 ng g–1,
0.4–1.1 ng g–1, and 0.3–7.7 ng g–1 in soil
for PAHs, PCBs, HCHs, and DDTs, respectively. The direct
relationship between the POPs concentration level in the
atmospheric air and soil at all sampling sites was observed. The
concentrations of PAHs dominated over those of other POP groups in
the atmospheric air and soil as well. The highest concentrations
of almost all POP compounds were determined in the atmospheric air
and soil in Vilnius city at the site with intensive traffic and
commercial activity. Such wide range investigations of POPs in the
natural environment components have been performed for the first
time in Lithuania.
Keywords: PAHs, PCBs, HCHs, DDTs,
concentration, passive samplers, atmospheric air, soil
PACS: 82.33.Tb; 92.60.Mt; 07.88.+y
PATVARŪS ORGANINIAI TERŠALAI
LIETUVOJE: TARŠOS ORE IR DIRVOJE ĮVERTINIMAS
Audronė Milukaitėa, Jana Klánováb, Ivan
Holoubekb, Inga Rimšelytėa, Kęstutis
Kvietkusa
aFizikos institutas, Vilnius, Lietuva
bMasaryko Universitetas, Brno, Čekija
Patvarių organinių teršalų (POT), tame tarpe
policiklinių aromatinių angliavandenilių (PAA), polichlorbifenilų
(PCB) ir pesticidų (heksachlorcikloheksanų (HCH),
dichlordifeniltrichlormetilmetanų (DDT)), tyrimai atlikti 2006 m.
kovo–rugpjūčio mėnesiais atmosferos ore ir dirvoje penkiose
Lietuvos vietovėse. POT atmosferos ore tirti panaudojant pasyvius
sorbentus, kurie pastaruoju metu yra plačiai taikomi atmosferos
užterštumo tyrimams regioniniu ir globaliu mastu. Tyrimų
rezultatai parodė, kad 16-kos PAA junginių, 7-ių PCB, 4-ių HCH ir
6-ių DDT suminės koncentracijos ore Lietuvos teritorijoje kito
6,4–127,8 ng m–3, 0,017–0,440 ng m–3,
0,088–0,310 ng m–3, 0,006–0,360 ng m–3
ribose, o dirvoje 29,5–529,3 ng g–1, 0,6–24,0 ng g–1,
0,4–1,1 ng g–1, 0,3–7,7 ng g–1 ribose.
Nustatyta tiesioginė priklausomybė tarp koncentracijų POT
atmosferos ore ir dirvoje. Tarp tirtų POT grupių policiklinių
aromatinių angliavandenilių koncentracijos buvo didžiausios ir
atmosferos ore, ir dirvoje. Beveik visų POT didžiausios
koncentracijos buvo Vilniaus mieste, o mažiausios – Rūgšteliškio
stebėsenos stotyje. Polichlorbifenilų, ypatingai PCB28,
koncentracijos buvo didesnės vasarą, esant aukštesnei oro
temperatūrai. Skirtingai nuo kitų POT, policiklinių aromatinių
angliavandenilių koncentracija ore mažėjo nuo šildymo sezono iki
vasaros pradžios. Vidutinės benz(a)pireno koncentracijos
atmosferos ore vertės, nustatytos naudojant pasyvius sorbentus,
buvo mažesnės už jų vidutines vertes, nustatytas imant oro
bandinius mažu filtracijos greičiu. Tai rodo, kad pasyvių sorbentų
metodas labiau tinka nustatant dujines negu aerozolines POT
koncentracijas. Tokie plataus spektro patvarių organinių teršalų
tyrimai gamtinės aplinkos sanduose Lietuvoje atlikti pirmą kartą.
References / Nuorodos
[1] K.S. Guruge and S. Tanabe, Contamination by persistent
organochlorines and butyltin compounds in the west coast of Sri
Lanka, Marine Pollution Bull. 2(3), 179–186 (2001),
http://dx.doi.org/10.1016/S0025-326X(00)00140-5
[2] M.L. Lee, M.V. Novotny, and K.D. Bartle, Analytical
Chemistry of Polycyclic Aromatic Compounds (Academic Press,
1981),
https://www.amazon.co.uk/Analytical-Chemistry-Polycyclic-Aromatic-Compounds/dp/0124145841/
[3] C.J. Halsall, R.G.M. Lee, P.J. Colemman, V. Burnett, P.
Harding-Jones, and K.C. Jones, PCBs in U.K. urban air, Environ. Sci.
Technol. 29(9), 2368–2376 (1995),
http://dx.doi.org/10.1021/es00009a032
[4] D.M. Wethington and K.C. Hombuckle, Milwaukee WI as a source of
atmospheric PCBs to Lake Michigan, Environ. Sci. Technol. 39(1),
57–63 (2005),
http://dx.doi.org/10.1021/es048902d
[5] C.C. Travis, H.A. Hattemer-Frey, and E. Silbergeld, Dioxin,
dioxin everywhere, Environ. Sci. Technol. 23(9), 1061–1063
(1989),
http://dx.doi.org/10.1021/es00067a002
[6] M. Tysklind, I. Fangmark, S. Marklund, A. Lindskog, L. Thaning,
and Ch. Rappe, Atmospheric transport and transformation of
polychlorinated dibenzo-dioxins and dibenzofurans, Environ. Sci.
Technol. 27(10), 2190–2197 (1993),
http://dx.doi.org/10.1021/es00047a028
[7] M. Oehme, Further evidence for long-range air transport of
polychlorinated aromates and pesticides: North America and Eurasia
to the Arctic, Ambio 20(7), 293–297 (1991)
[8] M. Millet, H. Wortham, A. Sanusi, and Ph. Mirabel, Atmospheric
contamination by pesticides: Determination in the liquid, gaseous
and particulate phases, Environ. Sci. Pollut. Res. 4(3),
172–180 (1997),
http://dx.doi.org/10.1007/BF02986327
[9] Y.F. Li, T.F. Bidleman, L.A. Barrie, and L.L. McConnell, Global
hexachlorcyclohexane use trends and their impact on the Arctic
atmospheric environment, Geophys. Res. Lett. 25(1), 39–41
(1998),
http://dx.doi.org/10.1029/97GL03441
[10] F. Wania, Assessing the potential of persistent organic
chemicals for long-range transport and accumulation in polar
regions, Environ. Sci. Technol. 37(7), 1344–1351 (2003),
http://dx.doi.org/10.1021/es026019e
[11] T. Harner, D. Mackay, and K.C. Jones, Model of the long-term
exchange of PCBs between soil and the atmosphere in the southern UK,
Environ. Sci. Technol. 29(5), 1200–1209 (1995),
http://dx.doi.org/10.1021/es00005a010
[12] W.D. Hafner and R.A. Hites, Potential sources pesticides, PCBs,
and PAHs to the atmosphere of the Great Lakes, Environ. Sci.
Technol. 37(17), 3764–3773 (2003),
http://dx.doi.org/10.1021/es034021f
[13] O. Roots and A. Sweetman, Passive air sampling of persistent
organic pollutants in two Estonian air monitoring stations, Oil
Shale 24(3), 483–494 (2007),
http://www.kirj.ee/public/oilshale/ref-oil-07-3-7.htm
[14] E. Brorstrom-Lunden, A. Lindskog, and J. Mower, Concentrations
and fluxes of organic compounds in the atmosphere of the Swedish
west coast, Atmos. Environ. 28(22), 3605–3615 (1994),
http://dx.doi.org/10.1016/1352-2310(94)00194-P
[15] I. Holoubek, J. Klánová, J. Jarkovský, and J. Kohoutek, Trends
in background levels of persistent organic pollutants at Kosetice
observatory, Czech Republic, Part I. Ambient air and wet deposition
1988–2005, J. Environ. Monit. 9(6), 564–571 (2007),
http://dx.doi.org/10.1039/B701096F
[16] T. Harner, M. Shoeib, M. Diamond, G. Stern, and B. Rosenberg,
Using passive air samplers to assess urban-rural trends for
persistent organic pollutants. 1. Polychlorinated biphenyls and
organochlorine pesticides, Environ. Sci. Technol. 38(17),
4474–4483 (2004),
http://dx.doi.org/10.1021/es040302r
[17] F. Jaward, N.J. Farrar, T. Harner, A. Sweetman, and K.C. Jones,
Passive air sampling of PCBs, PBDEs, and organochlorine pesticides
across Europe, Environ. Sci. Technol. 38(1), 34–41 (2004),
http://dx.doi.org/10.1021/es034705n
[18] T. Harner, K. Pozo, T. Gouin, A.M. Macdonald, H. Hung, J.
Cainey, and A. Peters, Global pilot study of persistent organic
pollutants (POPs) using PUF disk passive air samplers, Environ.
Pollut. 144(2), 445–452 (2006),
http://dx.doi.org/10.1016/j.envpol.2005.12.053
[19] J. Klanova, P. Cupr, and I. Holoubek, Application of
Passive Sampler for Monitoring of POPs in Ambient Air. Part II,
RECETOX_TOCOEN Reports, 319 (Masaryk University, Brno, 2007),
http://www.muni.cz/research/publications/827459
[20] J. Kohoutek, I. Holoubek, and J. Klanova, Methodology of
passive sampling, TOCOEN Report, 300 (Masaryk University, Brno,
2006) pp. 1–14,
[PDF]
[21] M. Shoeib and T. Harner, Characterization and comparison of
three passive air samplers for persistent organic pollutants,
Environ. Sci. Technol. 36(19), 4142–4151 (2002),
http://dx.doi.org/10.1021/es020635t
[22] J. Klánová, J. Kohoutek, L. Hamplová, P. Urbanová, and J.
Holoubek, Passsive air sampler as a tool for long-term air pollution
monitoring, Part 1. Performance assessment for seasonal and special
variations, Environ. Pollut. 144(2), 393–405 (2006),
http://dx.doi.org/10.1016/j.envpol.2005.12.048
[23] NOAA archive of the meteorological database,
http://www.arl.noaa.gov/ready/amet.html
[24] A. Milukaite, A.K. Nika, and V.A. Yuozefaite, Relationships of
distribution non-volatile organic compounds and carbon in
atmospheric aerosol, J. Ecol. Chem. 1, 47–50 (1993)
[25] A. Milukaite and V. Morkunas, Variations in concentration of
soot, total suspended particulates and organic admixtures in the air
at the cross-roads, Environ. Chem. Phys. 21(3–4), 66–71
(1999)
[26] A. Milukaite, Long-term trends of benzo(a)pyrene concentration
on the eastern coast of the Baltic Sea, Atmos. Environ. 40(11),
2046–2057 (2006),
http://dx.doi.org/10.1016/j.atmosenv.2005.11.045
[27] A. Milukaite and A. Mikelinskiene, Atmospheric air pollution
regional background formation at the eastern coast of the Baltic
Sea, in: Air Pollution Processes in Regional Scale, eds. D.
Melas and D. Syrakov (Kluwer Academic Publishers, 2003) pp. 221–229,
http://dx.doi.org/10.1007/978-94-007-1071-9_25
[28] A. Alford-Stevens, Analysing PCBs, Environ. Sci. Technol. 20(12),
1194–1199 (1986),
http://dx.doi.org/10.1021/es00154a001
[29] K.C. Jones, R. Duarte-Davidson, and P.A. Cause, Changes in the
PCB concentration of United Kingdom air between 1972 and 1992,
Environ. Sci. Technol. 29(1), 272–275 (1995),
http://dx.doi.org/10.1021/es00001a036
[30] W. Tsal, Y. Cohen, H. Sakugawa, and I. Kaplan, Dynamic
partitioning of semivolatile organics in gas/particle/rain phases
during rain scavening, Environ. Sci. Technol. 25(12),
2012–2023 (1991),
http://dx.doi.org/10.1021/es00024a005