[PDF]
http://dx.doi.org/10.3952/lithjphys.48408
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 48, 367–374 (2008)
INFLUENCE OF HIGH-VOLTAGE
TRANSMISSION LINES ON POLLUTANT CONCENTRATION IN NONURBANIZED
AREAS
Vaida Valuntaitė and Raselė Girgždienė
Vilnius Gediminas Technical University, Saulėtekio 11, LT–10223
Vilnius, Lithuania
E-mail: vaida.valuntaite@fm.vgtu.lt
Received 11 September 2008; revised
18 November 2008; accepted 4 December 2008
The variations of ozone and
aerosol particles as possible pollutants in the vicinity of
high-voltage transmission lines are presented and discussed. The
ozone, aerosol particle (
D > 0.4
m) number
concentrations and meteorological parameters near two high-voltage
330 kV transmission lines and at the “background” site at the 220
m distance from the lines were investigated. During the
investigation period the average ozone concentration close to
high-voltage lines was higher than the “background” concentration
and the instantaneous ozone concentration level was higher by 38%
in separate cases, especially during the nighttime. The influence
of meteorological parameters on the ozone concentration variation
is discussed and it is determined that the relative humidity, wind
speed and direction were the most important parameters causing the
ozone concentration increase in the surroundings of transmission
lines in nonurbanized areas. The analysis of aerosol particle
number concentration data showed that the high-voltage lines were
not the source of aerosol particles in the area of the experiment.
Keywords: high-voltage transmission
lines, ozone, aerosol particles, concentration, meteorological
parameters
PACS: 92.60.Sz, 52.80.Hc, 92.60.Mt
AUKŠTOS ĮTAMPOS ELEKTROS
PERDAVIMO LINIJŲ ĮTAKA TERŠALŲ KONCENTRACIJAI NEURBANIZUOTOSE
VIETOVĖSE
Vaida Valuntaitė, Raselė Girgždienė
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva
Aptariamas potencialus vietinis oro taršos
šaltinis – aukštos įtampos elektros perdavimo linijos. Pateikti
ozono ir aerozolio dalelių, kaip galimų teršalų prie aukštos
įtampos linijų, koncentracijos tyrimo rezultatai. Ozono ir
aerozolio dalelių (
D > 0,4
m)
skaitinės koncentracijos bei meteorologinių parametrų matavimai
atlikti 2007 m. rugsėjo mėn. Utenos rajone prie dviejų 330 kV
aukštos įtampos elektros perdavimo linijų. Tuo pačiu metu ozono
koncentracija matuota ir 220 m atstumu nuo linijų, ir ji darbe
traktuojama kaip „foninė“. Vidutinė ozono koncentracija
eksperimento metu prie aukštos įtampos linijų buvo didesnė nei
foninė. Parodyta, kad prie aukštos įtampos elektros perdavimo
linijų tam tikrais atvejais (pvz., nakties metu) stebimas ozono
koncentracijos padidėjimas iki 38 % palyginus su „fonine“.
Aptariama meteorologinių parametrų įtaka ozono koncentracijos
pokyčiams. Nustatyta, kad oro drėgnis, vėjo greitis ir kryptis yra
svarbiausi parametrai, sąlygojantys ozono padidėjimą aukštos
įtampos linijų aplinkoje neurbanizuotose vietovėse. Aerozolio
dalelių (
D > 0,4
m)
skaitinės koncentracijos duomenų analizė parodė, kad aukštos
įtampos linijos arba nėra lokalus šių dalelių šaltinis, arba jo
nebuvo galima įvertinti naudotu metodu. Aerozolio dalelių
koncentracijos pokyčius eksperimento metu lėmė oro masių pernašų
kaita.
References / Nuorodos
[1] W. Nazaroff, C.J. Weschler, and R.L. Corsi, Indoor air chemistry
and physics, Atmos. Environ. 37(39–40), 5451–5453 (2003),
http://dx.doi.org/10.1016/j.atmosenv.2003.09.021
[2] A. Chaloulakou and I. Mavroidis, Comparison of indoor and
outdoor concentrations of CO at a public school. Evaluation of an
indoor air quality model, Atmos. Environ. 36(11), 1769–1781
(2002),
http://dx.doi.org/10.1016/S1352-2310(02)00151-6
[3] A.V. Baughman, Indoor humidity and human health – Part I:
Literature review of health effects of humidity-influenced indoor
pollutants, ASHRAE Trans. 102(1), 193–211 (1996),
https://www.ashrae.org/resources--publications/ashrae-transactions
[4] J.D. Spengler, S. Ludwig, and R.A. Weker, Ozone exposures during
trans-continental and trans-pacific flights, Indoor Air 14(s7),
67–73 (2004),
http://dx.doi.org/10.1111/j.1600-0668.2004.00275.x
[5] A.S.H. Hamza, Evaluation and measurement of magnetic field
exposure over human body near EHV transmission lines, Elec. Power
Syst. Res. 74(1), 105–118 (2005),
http://dx.doi.org/10.1016/j.epsr.2004.10.003
[6] P. Brown, New evidence power lines cause cancer (2007),
http://www.rense.com/general3/pwoerlines.htm
[7] N.F. Elansky, L.V. Panin, and I.B. Belikov, Influence of
high-voltage transmission lines on surface ozone concentration,
Izvestiya Atmos. Ocean. Phys. 37, Suppl. 1, S92–S101 (2001),
http://www.maik.ru/cgi-perl/search.pl?type=abstract&name=physatms&number=1&year=1&page=92
[8] R. Girgždienė, Surface ozone measurement in Lithuania, Atmos.
Environ. 25A, 1791–1794 (1991),
http://dx.doi.org/10.1016/0960-1686(91)90263-7
[9] J.P. Beck, M. Krzyzanowski, and B. Koffi, Tropospheric Ozone
in EU, The consolidated report. EEA Topic report No 8/1998
(European Environment Agency, Copenhagen, 1998),
http://www.eea.europa.eu/publications/TOP08-98
[10] A. Buffoni, Ozone and nitrogen dioxide measurements in the
framework of the National Integrated Programme for the Control of
Forest Ecosystems (CONECOFOR), J. Limnol. 61(1), 69–76
(2002),
http://dx.doi.org/10.4081/jlimnol.2002.s1.69
[11] H.K. Elminir, Dependence of urban air pollutants on
meteorology, Sci. Total Environ. 350(1–3), 225–237 (2005),
http://dx.doi.org/10.1016/j.scitotenv.2005.01.043
[12] S.M. Semenow, I.M. Kounina, and B.A. Koukhta, Tropospheric
Ozone and Plant Growth in Europe (Publishing Center
"Meteorology and Hydrology", Moscow, 1999)
[13] C.H.J. Weschler, Ozone in indoor environments: Concentration
and chemistry, Indoor Air 10(4), 269–288 (2000),
http://dx.doi.org/10.1034/j.1600-0668.2000.010004269.x
[14] N. Blades, T. Oreszczyn, B. Bordass, and M. Cassar, Guidelines
on pollution control in museum buildings, Museum Practice (15)
(Museums Association, London, 2000),
[PDF]
[15] M. Lippmann, Health effects of ozone. A critical review, J. Air
Poll. Contr. Assoc. 39(5), 672–695 (1989),
http://dx.doi.org/10.1080/08940630.1989.10466554
[16] L. Moldave, S. Kjargaard, T. Sigsgaard, and M. Lebowitz,
Interaction between ozone and airborne particulate matter in office
air, Indoor Air 15(6), 383–392 (2005),
http://dx.doi.org/10.1111/j.1600-0668.2005.00366.x
[17] T. Aalto, J. Hatakka, and Y. Viisanen, Influence of air mass
source sector on variation in CO2 mixing ratio at a
boreal site in northern Finland, Boreal Environ. Res. 8(4),
385–393 (2003)
[18] B.P. Leaderer, L. Naeher, T. Jankun, K. Balenger, T.R. Holford,
C. Toth, J. Sullivan, J.M. Wolfson, and P. Koutrakis, Indoor,
outdoor, and regional summer and winter concentrations of PM10,
PM2.5, SO42–, H+, NO3,
and nitrous acid in homes with and without kerosene space heaters,
Environ. Health Perspect. 107(3), 223–231 (1999),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566377/
[19] EURAD (2008),
http://www.eurad.unikoeln.de/index_e.html
[20] B. Storm, Engineering and Operational Design of the
Proposed HVTL and Substations, MP & GRE Application to the
PUC for a HVTL Route Permit: Badoura Transmission Project, Docket
ET2, E015/TL-07-76, part 7 (2007),
[PDF]