[PDF]    http://dx.doi.org/10.3952/lithjphys.48408

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 367–374 (2008)


INFLUENCE OF HIGH-VOLTAGE TRANSMISSION LINES ON POLLUTANT CONCENTRATION IN NONURBANIZED AREAS
Vaida Valuntaitė and Raselė Girgždienė
Vilnius Gediminas Technical University, Saulėtekio 11, LT–10223 Vilnius, Lithuania
E-mail: vaida.valuntaite@fm.vgtu.lt

Received 11 September 2008; revised 18 November 2008; accepted 4 December 2008

The variations of ozone and aerosol particles as possible pollutants in the vicinity of high-voltage transmission lines are presented and discussed. The ozone, aerosol particle (D > 0.4 μ\mum) number concentrations and meteorological parameters near two high-voltage 330 kV transmission lines and at the “background” site at the 220 m distance from the lines were investigated. During the investigation period the average ozone concentration close to high-voltage lines was higher than the “background” concentration and the instantaneous ozone concentration level was higher by 38% in separate cases, especially during the nighttime. The influence of meteorological parameters on the ozone concentration variation is discussed and it is determined that the relative humidity, wind speed and direction were the most important parameters causing the ozone concentration increase in the surroundings of transmission lines in nonurbanized areas. The analysis of aerosol particle number concentration data showed that the high-voltage lines were not the source of aerosol particles in the area of the experiment.
Keywords: high-voltage transmission lines, ozone, aerosol particles, concentration, meteorological parameters
PACS: 92.60.Sz, 52.80.Hc, 92.60.Mt


AUKŠTOS ĮTAMPOS ELEKTROS PERDAVIMO LINIJŲ ĮTAKA TERŠALŲ KONCENTRACIJAI NEURBANIZUOTOSE VIETOVĖSE
Vaida Valuntaitė, Raselė Girgždienė
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Aptariamas potencialus vietinis oro taršos šaltinis – aukštos įtampos elektros perdavimo linijos. Pateikti ozono ir aerozolio dalelių, kaip galimų teršalų prie aukštos įtampos linijų, koncentracijos tyrimo rezultatai. Ozono ir aerozolio dalelių (D > 0,4 μ\mum) skaitinės koncentracijos bei meteorologinių parametrų matavimai atlikti 2007 m. rugsėjo mėn. Utenos rajone prie dviejų 330 kV aukštos įtampos elektros perdavimo linijų. Tuo pačiu metu ozono koncentracija matuota ir 220 m atstumu nuo linijų, ir ji darbe traktuojama kaip „foninė“. Vidutinė ozono koncentracija eksperimento metu prie aukštos įtampos linijų buvo didesnė nei foninė. Parodyta, kad prie aukštos įtampos elektros perdavimo linijų tam tikrais atvejais (pvz., nakties metu) stebimas ozono koncentracijos padidėjimas iki 38 % palyginus su „fonine“. Aptariama meteorologinių parametrų įtaka ozono koncentracijos pokyčiams. Nustatyta, kad oro drėgnis, vėjo greitis ir kryptis yra svarbiausi parametrai, sąlygojantys ozono padidėjimą aukštos įtampos linijų aplinkoje neurbanizuotose vietovėse. Aerozolio dalelių (D > 0,4 μ\mum) skaitinės koncentracijos duomenų analizė parodė, kad aukštos įtampos linijos arba nėra lokalus šių dalelių šaltinis, arba jo nebuvo galima įvertinti naudotu metodu. Aerozolio dalelių koncentracijos pokyčius eksperimento metu lėmė oro masių pernašų kaita.


References / Nuorodos


[1] W. Nazaroff, C.J. Weschler, and R.L. Corsi, Indoor air chemistry and physics, Atmos. Environ. 37(39–40), 5451–5453 (2003),
http://dx.doi.org/10.1016/j.atmosenv.2003.09.021
[2] A. Chaloulakou and I. Mavroidis, Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model, Atmos. Environ. 36(11), 1769–1781 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00151-6
[3] A.V. Baughman, Indoor humidity and human health – Part I: Literature review of health effects of humidity-influenced indoor pollutants, ASHRAE Trans. 102(1), 193–211 (1996),
https://www.ashrae.org/resources--publications/ashrae-transactions
[4] J.D. Spengler, S. Ludwig, and R.A. Weker, Ozone exposures during trans-continental and trans-pacific flights, Indoor Air 14(s7), 67–73 (2004),
http://dx.doi.org/10.1111/j.1600-0668.2004.00275.x
[5] A.S.H. Hamza, Evaluation and measurement of magnetic field exposure over human body near EHV transmission lines, Elec. Power Syst. Res. 74(1), 105–118 (2005),
http://dx.doi.org/10.1016/j.epsr.2004.10.003
[6] P. Brown, New evidence power lines cause cancer (2007),
http://www.rense.com/general3/pwoerlines.htm
[7] N.F. Elansky, L.V. Panin, and I.B. Belikov, Influence of high-voltage transmission lines on surface ozone concentration, Izvestiya Atmos. Ocean. Phys. 37, Suppl. 1, S92–S101 (2001),
http://www.maik.ru/cgi-perl/search.pl?type=abstract&name=physatms&number=1&year=1&page=92
[8] R. Girgždienė, Surface ozone measurement in Lithuania, Atmos. Environ. 25A, 1791–1794 (1991),
http://dx.doi.org/10.1016/0960-1686(91)90263-7
[9] J.P. Beck, M. Krzyzanowski, and B. Koffi, Tropospheric Ozone in EU, The consolidated report. EEA Topic report No 8/1998 (European Environment Agency, Copenhagen, 1998),
http://www.eea.europa.eu/publications/TOP08-98
[10] A. Buffoni, Ozone and nitrogen dioxide measurements in the framework of the National Integrated Programme for the Control of Forest Ecosystems (CONECOFOR), J. Limnol. 61(1), 69–76 (2002),
http://dx.doi.org/10.4081/jlimnol.2002.s1.69
[11] H.K. Elminir, Dependence of urban air pollutants on meteorology, Sci. Total Environ. 350(1–3), 225–237 (2005),
http://dx.doi.org/10.1016/j.scitotenv.2005.01.043
[12] S.M. Semenow, I.M. Kounina, and B.A. Koukhta, Tropospheric Ozone and Plant Growth in Europe (Publishing Center "Meteorology and Hydrology", Moscow, 1999)
[13] C.H.J. Weschler, Ozone in indoor environments: Concentration and chemistry, Indoor Air 10(4), 269–288 (2000),
http://dx.doi.org/10.1034/j.1600-0668.2000.010004269.x
[14] N. Blades, T. Oreszczyn, B. Bordass, and M. Cassar, Guidelines on pollution control in museum buildings, Museum Practice (15) (Museums Association, London, 2000),
[PDF]
[15] M. Lippmann, Health effects of ozone. A critical review, J. Air Poll. Contr. Assoc. 39(5), 672–695 (1989),
http://dx.doi.org/10.1080/08940630.1989.10466554
[16] L. Moldave, S. Kjargaard, T. Sigsgaard, and M. Lebowitz, Interaction between ozone and airborne particulate matter in office air, Indoor Air 15(6), 383–392 (2005),
http://dx.doi.org/10.1111/j.1600-0668.2005.00366.x
[17] T. Aalto, J. Hatakka, and Y. Viisanen, Influence of air mass source sector on variation in CO2 mixing ratio at a boreal site in northern Finland, Boreal Environ. Res. 8(4), 385–393 (2003)
[18] B.P. Leaderer, L. Naeher, T. Jankun, K. Balenger, T.R. Holford, C. Toth, J. Sullivan, J.M. Wolfson, and P. Koutrakis, Indoor, outdoor, and regional summer and winter concentrations of PM10, PM2.5, SO42–, H+, NO3, and nitrous acid in homes with and without kerosene space heaters, Environ. Health Perspect. 107(3), 223–231 (1999),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566377/
[19] EURAD (2008),
http://www.eurad.unikoeln.de/index_e.html
[20] B. Storm, Engineering and Operational Design of the Proposed HVTL and Substations, MP & GRE Application to the PUC for a HVTL Route Permit: Badoura Transmission Project, Docket ET2, E015/TL-07-76, part 7 (2007),
[PDF]