[PDF]    http://dx.doi.org/10.3952/lithjphys.49106

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 45–51 (2009)


APPLICATION OF BINAURAL HEARING SYSTEM FOR ASSESSMENT OF ENVIRONMENTAL NOISE IMPACT
A. Jostaitė and A. Kanapickas
Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
E-mail: a.kanapickas@gmf.vdu.lt

Received 9 October 2008; revised 21 February 2009; accepted 19 March 2009

In the present work an experimental system is presented that allows one to investigate physical principles of binaural hearing and identification of sound sources. It is checked that at low frequencies interaural time difference (whereas at high frequencies – the interaural level difference) cue is preferable for recognizing location of sound sources. At intermediate frequencies human auditory system uses both processes for binaural hearing. Also the effect of traffic noise on binaural hearing is investigated. It is shown that environmental noises consist mainly of low frequency spectral components. Therefore noise is considered to have influence on binaural cues which human auditory system uses for spatial sound localization at low frequencies, i. e. the interaural time difference.
Keywords: auditory localization, binaural hearing, environmental noise
PACS: 43.66.Pn, 43.50.Rq, 43.66.Qp


BINAURINIO GIRDĖJIMO SISTEMOS TAIKYMAS APLINKOS TRIUKŠMO POVEIKIUI VERTINTI
A. Jostaitė, A. Kanapickas
Vytauto Didžiojo universitetas, Kaunas, Lietuva

Pateikta eksperimentinė sistema, skirta binaurinio girdėjimo savybėms tirti. Parodyta, kad žemų dažnių srityje nustatant garso šaltinio padėtį ypatingai svarbus garso bangos vėlavimas. Aukštų dažnių srityje pagrindinis indikatorius, padedantis lokalizuoti garso šaltinio padėtį, yra garso intensyvumo skirtumas tarp dviejų ausų. Atlikti aplinkos triukšmo spektro tyrimai parodė, kad šiuose spektruose vyrauja žemo dažnio sandai. Tuo būdu rasta, kad aplinkos triukšmas kliudo suvokti garso bangų vėlavimą, padidindamas binaurinio girdėjimo slenkstį.


References / Nuorodos


[1] V. Willert, J. Eggert, J. Adamy, R. Stahl, and E. Korner, A probabilistic model for binaural sound localization, IEEE Trans. Syst. Man Cybern. B 36, 982–994 (2006),
http://dx.doi.org/10.1109/TSMCB.2006.872263
[2] M. Björkman, Long time measurements of noise from wind turbines, J. Sound Vib. 277, 567–572 (2004),
http://dx.doi.org/10.1016/j.jsv.2004.03.018
[3] H. Viste and G. Evangelista, A method for separation of overlapping partials based on similarity of temporal envelopes in multi-channel mixtures, IEEE Trans. Audio Speech Lang. Process. 14, 1051–1061 (2006),
http://dx.doi.org/10.1109/TSA.2005.857574
[4] J. Blauert, Spatial Hearing: The Psychophysics of Human Sound Localization, revised ed. (MIT Press, Cambridge, 1997),
https://mitpress.mit.edu/books/spatial-hearing
[5] W.A. Yost, Hearing thresholds, loudness of sound, and sound adaptation, in: Handbook of Noise and Vibration Control, ed. M.J. Crocker (Wiley, New York, 2007) pp. 286–292,
http://dx.doi.org/10.1002/9780470209707.ch21
[6] W.A. Yost, Fundamentals of Hearing: An Introduction, 5th ed. (Academic, San Diego, 2006),
http://www.amazon.co.uk/William-Yost-Fundamentals-Hearing-Introduction/dp/B00NBJVN1W/
[7] ISO 226:2003 Acoustics, normal equal-loudness-level countours,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34222
[8] G.F. Kuhn, Model for the interaural time differences in the azimuthal plane, J. Acoust. Soc. Am. 62, 157–167 (1977),
http://dx.doi.org/10.1121/1.381498
[9] M.A. Burges, Environmental noise impact assessment, in: Handbook of Noise and Vibration Control, ed. M.J. Crocker (Wiley, New York, 2007) pp. 1501–1508,
http://dx.doi.org/10.1002/9780470209707.ch127