[PDF]
http://dx.doi.org/10.3952/lithjphys.49106
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 45–51 (2009)
APPLICATION OF BINAURAL HEARING
SYSTEM FOR ASSESSMENT OF ENVIRONMENTAL NOISE IMPACT
A. Jostaitė and A. Kanapickas
Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas,
Lithuania
E-mail: a.kanapickas@gmf.vdu.lt
Received 9 October 2008; revised 21
February 2009; accepted 19 March 2009
In the present work an
experimental system is presented that allows one to investigate
physical principles of binaural hearing and identification of
sound sources. It is checked that at low frequencies interaural
time difference (whereas at high frequencies the interaural
level difference) cue is preferable for recognizing location of
sound sources. At intermediate frequencies human auditory system
uses both processes for binaural hearing. Also the effect of
traffic noise on binaural hearing is investigated. It is shown
that environmental noises consist mainly of low frequency spectral
components. Therefore noise is considered to have influence on
binaural cues which human auditory system uses for spatial sound
localization at low frequencies, i. e. the interaural time
difference.
Keywords: auditory localization,
binaural hearing, environmental noise
PACS: 43.66.Pn, 43.50.Rq, 43.66.Qp
BINAURINIO GIRDĖJIMO SISTEMOS TAIKYMAS
APLINKOS TRIUKŠMO POVEIKIUI VERTINTI
A. Jostaitė, A. Kanapickas
Vytauto Didžiojo universitetas, Kaunas, Lietuva
Pateikta eksperimentinė sistema, skirta binaurinio girdėjimo
savybėms tirti. Parodyta, kad žemų dažnių srityje nustatant garso
šaltinio padėtį ypatingai svarbus garso bangos vėlavimas. Aukštų
dažnių srityje pagrindinis indikatorius, padedantis lokalizuoti
garso šaltinio padėtį, yra garso intensyvumo skirtumas tarp dviejų
ausų. Atlikti aplinkos triukšmo spektro tyrimai parodė, kad šiuose
spektruose vyrauja žemo dažnio sandai. Tuo būdu rasta, kad
aplinkos triukšmas kliudo suvokti garso bangų vėlavimą,
padidindamas binaurinio girdėjimo slenkstį.
References / Nuorodos
[1] V. Willert, J. Eggert, J. Adamy, R. Stahl, and E. Korner, A
probabilistic model for binaural sound localization, IEEE Trans.
Syst. Man Cybern. B 36, 982–994 (2006),
http://dx.doi.org/10.1109/TSMCB.2006.872263
[2] M. Björkman, Long time measurements of noise from wind turbines,
J. Sound Vib. 277, 567–572 (2004),
http://dx.doi.org/10.1016/j.jsv.2004.03.018
[3] H. Viste and G. Evangelista, A method for separation of
overlapping partials based on similarity of temporal envelopes in
multi-channel mixtures, IEEE Trans. Audio Speech Lang. Process. 14,
1051–1061 (2006),
http://dx.doi.org/10.1109/TSA.2005.857574
[4] J. Blauert, Spatial Hearing: The Psychophysics of Human
Sound Localization, revised ed. (MIT Press, Cambridge, 1997),
https://mitpress.mit.edu/books/spatial-hearing
[5] W.A. Yost, Hearing thresholds, loudness of sound, and sound
adaptation, in: Handbook of Noise and Vibration Control, ed.
M.J. Crocker (Wiley, New York, 2007) pp. 286–292,
http://dx.doi.org/10.1002/9780470209707.ch21
[6] W.A. Yost, Fundamentals of Hearing: An Introduction, 5th
ed. (Academic, San Diego, 2006),
http://www.amazon.co.uk/William-Yost-Fundamentals-Hearing-Introduction/dp/B00NBJVN1W/
[7] ISO 226:2003 Acoustics, normal equal-loudness-level countours,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34222
[8] G.F. Kuhn, Model for the interaural time differences in the
azimuthal plane, J. Acoust. Soc. Am. 62, 157–167 (1977),
http://dx.doi.org/10.1121/1.381498
[9] M.A. Burges, Environmental noise impact assessment, in: Handbook
of Noise and Vibration Control, ed. M.J. Crocker (Wiley, New
York, 2007) pp. 1501–1508,
http://dx.doi.org/10.1002/9780470209707.ch127