[PDF]
http://dx.doi.org/10.3952/lithjphys.49107
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 97–103 (2009)
INFLUENCE OF TORCH POWER AND
Ar/C2H2 RATIO ON STRUCTURE OF AMORPHOUS
CARBON FILMS
L. Marcinauskasa,b, A. Grigonisa, V.
Valinčiusb, and P. Valatkevičiusb
aPhysics Department, Kaunas University of
Technology, Studentų 50, LT-51368 Kaunas, Lithuania
E-mail: liutauras.marcinauskas@ktu.lt
bPlasma Processing Laboratory, Lithuanian Energy
Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
Received 14 October 2008; revised
29 January 2009; accepted 19 March 2009
The amorphous hydrogenated carbon films (a-C:H)
were formed on the stainless steel substrates from an
argon–acetylene gas mixture at atmospheric pressure using a direct
current plasma torch discharge. The carbon films were deposited
using Ar/C2H2 gas volume ratios 100:1,
150:1, and 200:1 and plasma torch power of 600 and 870 W. It has
been obtained that the increase of the torch power leads to higher
film growth rate and increases surface roughness. The growth rate
varies from 20 up to 425 nm/s depending on the coating formation
conditions. The structure and dominant bonds of the films were
investigated by Fourier transform infrared (FTIR) and Raman
spectroscopy (RS) measurements. RS results indicated that the sp2/sp3
content in the films depended on the torch power and C2H2
amount in argon plasma. It was demonstrated that a diamond-like /
graphite-like carbon and glassy carbon films could be deposited by
varying the Ar/C2H2 ratio and plasma torch
power.
Keywords: plasma torch, carbon films, acetylene, structure
PACS: 52.75.Hn, 81.05.Uw, 68.55.-a
IŠLYDŽIO GALIOS IR Ar/C2H2
DUJŲ SANTYKIO ĮTAKA AMORFINIŲ ANGLIES DANGŲ STRUKTŪRAI
L. Marcinauskasa,b, A. Grigonisa, V.
Valinčiusb, P. Valatkevičiusb
aKauno technologijos universitetas, Kaunas, Lietuva
bLietuvos energetikos institutas, Kaunas,
Lietuva
Nagrinėjama amorfnių hidrogenizuotų anglies
dangų (a-C:H) sintezė ant plieno padėklų, panaudojant atmosferos
slėgio elektrolankinį nusodinimą iš argonoacetileno dujų mišinio
plazmos. Imta trys Ar/C
2H
2 dujų santykiai
(100, 150 ir 200) ir dvi plazmos generatoriaus galios vertės 600
ir 870 W. Dangos tirtos skenuojančiuoju elektroniniu mikroskopu,
Ramano (RS) ir infraraudonųjų spindulių (IR) spektroskopijos
metodais.
Nustatyta, kad didinant plazmos generatoriaus galią ir mažinant
Ar/C
2H
2 santykį dangų augimo greitis
sparčiai didėja (nuo 20 iki 425 nm/s), tačiau augant nusodinimo
greičiui formuojasi koloninės struktūros ir netolygaus
mikroreljefo dangos. Matavimai parodė, kad keičiant išlydžio
parametrus ir nešančiujų bei darbinių dujų santykį, plazmos srauto
temperatūra kinta 570–690
C
ruože. Taigi, keičiant darbines sąlygas keičiasi acetileno
disociacijos ir sintezės procesai, padėklą pasiekia nevienodi
kiekiai skirtingos prigimties ir energijos radikalų. RS ir IR
tyrimai parodė, kad naudotame išlydžio galių ir dujų santykių
ruože gautos a-C:H dangos nebuvo vienalytės: jose yra deimanto
tipo (sp
3) anglies, grafito tipo (sp
2)
anglies ir stiklo anglies fazės. Argonoacetileno santykio
didėjimas lemia sp
2sp
3 ryšių kitimą dangoje,
bet skirtingoms plazmos generatoriaus galioms tai vyksta
nevienodai, pavyzdžiui, esant 600 W galiai, sp
3 ryšių
koncentracija mažėja didinant Ar/C
2H
2
santykį, tuo tarpu esant 870 W sp
3 ryšių kiekis išauga
mažinant acetileno kiekį plazmoje.
References / Nuorodos
[1] P. Fauchais, Understanding plasma spraying, J. Phys. D 37,
R86–R108 (2004),
http://dx.doi.org/10.1088/0022-3727/37/9/R02
[2] P. Fauchais, A. Vardelle, and A. Denoirjean, Reactive thermal
plasmas: Ultrafine particle synthesis and coating deposition, Surf.
Coatings Technol. 97, 66–78 (1997),
http://dx.doi.org/10.1016/S0257-8972(97)00294-6
[3] H. Huang and L. Tang, Treatment of organic waste using thermal
plasma pyrolysis technology, Energy Convers. Management 48,
1331–1337 (2007),
http://dx.doi.org/10.1016/j.enconman.2006.08.013
[4] J. Asmussen and D. Reinhard, Diamond Thin Films Handbook
(Marcel Dekker Inc., New York, 2002),
http://dx.doi.org/10.1201/9780203910603
[5] T. Zaharia, T.J. Sullivan, S.O. Saied, R.S.M. Bosch, and M.D.
Bijker, Fast deposition of diamond-like hydrogenated carbon films,
Diamond Relat. Mater. 16, 623–629 (2007),
http://dx.doi.org/10.1016/j.diamond.2006.11.055
[6] J. Benedikt, K.G.Y. Letourneur, M. Wisse, D.C. Schram, and
M.C.M. van de Sanden, Plasma chemistry during deposition of a-C:H,
Diamond Relat. Mater. 11, 989–993 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00534-9
[7] J. Benedikt, R.V. Woen, S.L.M. van Mensfoort, V. Perina, J.
Hong, and M.C.M. van de Sanden, Plasma chemistry during the
deposition of a-C:H films and its influence on film properties,
Diamond Relat. Mater. 12, 90–97 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00008-6
[8] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. 37,
129–281 (2002),
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[9] A. Grigonis, Ž. Rutkūnienė, A. Medvid, P. Onufrijevs, and J.
Babonas, Modification of amorphous a-C:H films by laser irradiation,
Lithuanian J. Phys. 47, 343–350 (2007),
http://dx.doi.org/10.3952/lithjphys.47321
[10] M. Clin, O. Durand-Drouhin, A. Zeinert, and J.C. Picot, A
correlation between the microstructure and optical properties of
hydrogenated amorphous carbon films prepared by RF magnetron
sputtering, Diamond Relat. Mater. 8, 527–531 (1999),
http://dx.doi.org/10.1016/S0925-9635(98)00404-X
[11] S.P. Louh, C.H.Wong, and M.H. Hon, Effects of acetylene on
property of plasma amorphous carbon films, Thin Solid Films 498,
235–239 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.07.099
[12] E. Tomasella, L. Thomas, M. Dubois, and C. Meunier, Structural
and mechanical properties of a-C:H thin films grown by RF-PECVD,
Diamond Relat. Mater. 13, 1618–1624 (2004),
http://dx.doi.org/10.1016/j.diamond.2004.01.017
[13] W.M.M. Kessels, J.W.A.M. Gielen, M.C.M. van de Sanden, L.J. van
Ijzendoorn, E.H.A. Dekempeneer, and D.C. Schram, A model for the
deposition of a-C:H using an expanding thermal arc, Surf. Coatings
Technol. 98, 1584–1589 (1998),
http://dx.doi.org/10.1016/S0257-8972(97)00358-7
[14] L. Pereira, E. Pereira, A. Cremades, J. Piqueras, J. Jimenez,
and J.M. Bielza, Characterisation of different habits in
torch-flame-grown diamonds and diamond-like films, Diamond Relat.
Mater. 8, 1333–1341 (1999),
http://dx.doi.org/10.1016/S0925-9635(99)00135-1
[15] L. Marcinauskas, A. Grigonis, P. Valatkevičius, and V.
Šablinskas, Formation of carbon coatings employing plasma torch from
argon-acetylene gas mixture, Proc. SPIE 6596, 65961D–65967D
(2007),
http://dx.doi.org/10.1117/12.726511
[16] L. Marcinauskas, A. Grigonis, V. Valinčius, and P.
Valatkevičius, Surface and structural analysis of carbon coatings
produced by plasma jet CVD, Mater. Sci. 13, 269–272 (2007),
http://internet.ktu.lt/en/science/journals/medz/medz0-91.html
[17] R. Paul, S.N. Das, S. Dalui, R.N. Gayen, R.K. Roy, R. Bhar, and
A.K. Pal, Synthesis of DLC films with different sp2/sp3
ratios and their hydrophobic behavior, J. Phys, D 41, 055309
(2008),
http://dx.doi.org/10.1088/0022-3727/41/5/055309
[18] J. Birrell, J.E. Gerbi, O. Auciello, J.M. Gibson, J. Johnson,
and J.A. Carlisle, Interpretation of the Raman spectra of
ultrananocrystalline diamond, Diamond Relat. Mater. 14,
86–92 (2005),
http://dx.doi.org/10.1016/j.diamond.2004.07.012