[PDF]    http://dx.doi.org/10.3952/lithjphys.49107

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 97–103 (2009)


INFLUENCE OF TORCH POWER AND Ar/C2H2 RATIO ON STRUCTURE OF AMORPHOUS CARBON FILMS
L. Marcinauskasa,b, A. Grigonisa, V. Valinčiusb, and P. Valatkevičiusb
aPhysics Department, Kaunas University of Technology, Studentų 50, LT-51368 Kaunas, Lithuania
E-mail: liutauras.marcinauskas@ktu.lt
bPlasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania

Received 14 October 2008; revised 29 January 2009; accepted 19 March 2009

The amorphous hydrogenated carbon films (a-C:H) were formed on the stainless steel substrates from an argon–acetylene gas mixture at atmospheric pressure using a direct current plasma torch discharge. The carbon films were deposited using Ar/C2H2 gas volume ratios 100:1, 150:1, and 200:1 and plasma torch power of 600 and 870 W. It has been obtained that the increase of the torch power leads to higher film growth rate and increases surface roughness. The growth rate varies from 20 up to 425 nm/s depending on the coating formation conditions. The structure and dominant bonds of the films were investigated by Fourier transform infrared (FTIR) and Raman spectroscopy (RS) measurements. RS results indicated that the sp2/sp3 content in the films depended on the torch power and C2H2 amount in argon plasma. It was demonstrated that a diamond-like / graphite-like carbon and glassy carbon films could be deposited by varying the Ar/C2H2 ratio and plasma torch power.
Keywords:
plasma torch, carbon films, acetylene, structure
PACS: 52.75.Hn, 81.05.Uw, 68.55.-a


IŠLYDŽIO GALIOS IR Ar/C2H2 DUJŲ SANTYKIO ĮTAKA AMORFINIŲ ANGLIES DANGŲ STRUKTŪRAI
L. Marcinauskasa,b, A. Grigonisa, V. Valinčiusb, P. Valatkevičiusb
aKauno technologijos universitetas, Kaunas, Lietuva
bLietuvos energetikos institutas, Kaunas, Lietuva

Nagrinėjama amorfnių hidrogenizuotų anglies dangų (a-C:H) sintezė ant plieno padėklų, panaudojant atmosferos slėgio elektrolankinį nusodinimą iš argono–acetileno dujų mišinio plazmos. Imta trys Ar/C2H2 dujų santykiai (100, 150 ir 200) ir dvi plazmos generatoriaus galios vertės – 600 ir 870 W. Dangos tirtos skenuojančiuoju elektroniniu mikroskopu, Ramano (RS) ir infraraudonųjų spindulių (IR) spektroskopijos metodais.
Nustatyta, kad didinant plazmos generatoriaus galią ir mažinant Ar/C2H2 santykį dangų augimo greitis sparčiai didėja (nuo 20 iki 425 nm/s), tačiau augant nusodinimo greičiui formuojasi koloninės struktūros ir netolygaus mikroreljefo dangos. Matavimai parodė, kad keičiant išlydžio parametrus ir nešančiujų bei darbinių dujų santykį, plazmos srauto temperatūra kinta 570––690 \circC ruože. Taigi, keičiant darbines sąlygas keičiasi acetileno disociacijos ir sintezės procesai, padėklą pasiekia nevienodi kiekiai skirtingos prigimties ir energijos radikalų. RS ir IR tyrimai parodė, kad naudotame išlydžio galių ir dujų santykių ruože gautos a-C:H dangos nebuvo vienalytės: jose yra deimanto tipo (sp3) anglies, grafito tipo (sp2) anglies ir stiklo anglies fazės. Argono–acetileno santykio didėjimas lemia sp2sp3 ryšių kitimą dangoje, bet skirtingoms plazmos generatoriaus galioms tai vyksta nevienodai, pavyzdžiui, esant 600 W galiai, sp3 ryšių koncentracija mažėja didinant Ar/C2H2 santykį, tuo tarpu esant 870 W sp3 ryšių kiekis išauga mažinant acetileno kiekį plazmoje.


References / Nuorodos


[1] P. Fauchais, Understanding plasma spraying, J. Phys. D 37, R86–R108 (2004),
http://dx.doi.org/10.1088/0022-3727/37/9/R02
[2] P. Fauchais, A. Vardelle, and A. Denoirjean, Reactive thermal plasmas: Ultrafine particle synthesis and coating deposition, Surf. Coatings Technol. 97, 66–78 (1997),
http://dx.doi.org/10.1016/S0257-8972(97)00294-6
[3] H. Huang and L. Tang, Treatment of organic waste using thermal plasma pyrolysis technology, Energy Convers. Management 48, 1331–1337 (2007),
http://dx.doi.org/10.1016/j.enconman.2006.08.013
[4] J. Asmussen and D. Reinhard, Diamond Thin Films Handbook (Marcel Dekker Inc., New York, 2002),
http://dx.doi.org/10.1201/9780203910603
[5] T. Zaharia, T.J. Sullivan, S.O. Saied, R.S.M. Bosch, and M.D. Bijker, Fast deposition of diamond-like hydrogenated carbon films, Diamond Relat. Mater. 16, 623–629 (2007),
http://dx.doi.org/10.1016/j.diamond.2006.11.055
[6] J. Benedikt, K.G.Y. Letourneur, M. Wisse, D.C. Schram, and M.C.M. van de Sanden, Plasma chemistry during deposition of a-C:H, Diamond Relat. Mater. 11, 989–993 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00534-9
[7] J. Benedikt, R.V. Woen, S.L.M. van Mensfoort, V. Perina, J. Hong, and M.C.M. van de Sanden, Plasma chemistry during the deposition of a-C:H films and its influence on film properties, Diamond Relat. Mater. 12, 90–97 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00008-6
[8] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. 37, 129–281 (2002),
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
[9] A. Grigonis, Ž. Rutkūnienė, A. Medvid, P. Onufrijevs, and J. Babonas, Modification of amorphous a-C:H films by laser irradiation, Lithuanian J. Phys. 47, 343–350 (2007),
http://dx.doi.org/10.3952/lithjphys.47321
[10] M. Clin, O. Durand-Drouhin, A. Zeinert, and J.C. Picot, A correlation between the microstructure and optical properties of hydrogenated amorphous carbon films prepared by RF magnetron sputtering, Diamond Relat. Mater. 8, 527–531 (1999),
http://dx.doi.org/10.1016/S0925-9635(98)00404-X
[11] S.P. Louh, C.H.Wong, and M.H. Hon, Effects of acetylene on property of plasma amorphous carbon films, Thin Solid Films 498, 235–239 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.07.099
[12] E. Tomasella, L. Thomas, M. Dubois, and C. Meunier, Structural and mechanical properties of a-C:H thin films grown by RF-PECVD, Diamond Relat. Mater. 13, 1618–1624 (2004),
http://dx.doi.org/10.1016/j.diamond.2004.01.017
[13] W.M.M. Kessels, J.W.A.M. Gielen, M.C.M. van de Sanden, L.J. van Ijzendoorn, E.H.A. Dekempeneer, and D.C. Schram, A model for the deposition of a-C:H using an expanding thermal arc, Surf. Coatings Technol. 98, 1584–1589 (1998),
http://dx.doi.org/10.1016/S0257-8972(97)00358-7
[14] L. Pereira, E. Pereira, A. Cremades, J. Piqueras, J. Jimenez, and J.M. Bielza, Characterisation of different habits in torch-flame-grown diamonds and diamond-like films, Diamond Relat. Mater. 8, 1333–1341 (1999),
http://dx.doi.org/10.1016/S0925-9635(99)00135-1
[15] L. Marcinauskas, A. Grigonis, P. Valatkevičius, and V. Šablinskas, Formation of carbon coatings employing plasma torch from argon-acetylene gas mixture, Proc. SPIE 6596, 65961D–65967D (2007),
http://dx.doi.org/10.1117/12.726511
[16] L. Marcinauskas, A. Grigonis, V. Valinčius, and P. Valatkevičius, Surface and structural analysis of carbon coatings produced by plasma jet CVD, Mater. Sci. 13, 269–272 (2007),
http://internet.ktu.lt/en/science/journals/medz/medz0-91.html
[17] R. Paul, S.N. Das, S. Dalui, R.N. Gayen, R.K. Roy, R. Bhar, and A.K. Pal, Synthesis of DLC films with different sp2/sp3 ratios and their hydrophobic behavior, J. Phys, D 41, 055309 (2008),
http://dx.doi.org/10.1088/0022-3727/41/5/055309
[18] J. Birrell, J.E. Gerbi, O. Auciello, J.M. Gibson, J. Johnson, and J.A. Carlisle, Interpretation of the Raman spectra of ultrananocrystalline diamond, Diamond Relat. Mater. 14, 86–92 (2005),
http://dx.doi.org/10.1016/j.diamond.2004.07.012