[PDF]
http://dx.doi.org/10.3952/lithjphys.49113
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 111–115 (2009)
ETCHED TRACK MORPHOLOGY IN SiO2
IRRADIATED WITH SWIFT HEAVY IONS
F.F. Komarova, L.A. Vlasukovaa, P.V.
Kuchinskyia, A.Yu. Didykb, V.A. Skuratovb,
and N.A. Voronovac
aBelarusian State University, Nezavisimosti Ave. 4,
220030 Minsk, Belarus
E-mail: vlasukova@bsu.by
bLaboratory of Nuclear Reactions, Joint Institute
for Nuclear Research, 141980 Dubna, Russia
cAl-Farabi Kazakh National University, Almaty,
Kazakhstan
Received 10 October 2008; accepted
19 March 2009
We examined pore formation in
thermally oxidized silicon wafers (SiO
2 / Si) by means
of swift heavy ion irradiation followed by chemical etching of
latent track zones in SiO
2 matrix. The samples were
irradiated with 710 MeV Bi up to the fluences of (1–5)
10
8
and 5
10
10
cm
–2. Afterwards the targets were etched in the dilute
solutions of hydrofluoric acid for various durations. Scanning
electron microscopy was used to probe the processed samples. From
the geometric parameters of the pores the etch rate
Vt
of the tracks and the etch rate
Vb of bulk
a-SiO
2 were estimated. The etching behaviour and
morphology of the etched tracks has been found to change markedly
with fluence. Mutual influence of tracks at their higher densities
was analysed in terms of radiation-induced modications of
material around the ion path. It was shown that the morphology of
etched tracks did not change after the annealing at 900
C
for 30 min.
Keywords: swift ion irradiation, silicon
dioxide, latent track etching, SEM
PACS: 61.46.-w, 61.82.Ms, 68.37.-d
ĖSDINTŲ GRIOVELIŲ MORFOLOGIJA
GREITAIS SUNKIAISIAIS JONAIS ŠVITINTAME SiO2
F.F. Komarova, L.A. Vlasukovaa, P.V.
Kuchinskyia, A.Yu. Didykb, V.A. Skuratovb,
N.A. Voronovac
aBaltarusijos valstybinis universitetas, Minskas,
Baltarusija
bJungtinio branduoliniu tyrimu instituto
Branduoliniu reakciju laboratorija, Dubna, Rusija
cAl-Farabi Kazachijos nacionalinis
universitetas, Almaty, Kazachija
Tirtas pórų radimasis termiškai oksiduotuose
silicio bandiniuose, juos apšvitinus greitais sunkiaisiais jonais
ir po to chemiškai ėsdinant liekamųjų trekų sritis SiO
2
matricoje. Pavyzdėliai švitinti 710 MeV Bi (1–5)
10
8
ir 5
10
10
cm
–2 srautais. Vėliau jie ėsdinti skiestu vandenilio
fluorido tirpalu įvairų laiką. Apdoroti bandiniai tirti
skenuojančiu elektroniniu mikroskopu. Pagal geometrinius pórų
parametrus įvertinta trekų ėsdinimo sparta
Vt
bei ištisinio a-SiO
2 ėsdinimo sparta
Vb.
Nustatyta, kad ėsdinimas ir griovelių morfologija labai priklauso
nuo švitinimo srauto. Analizuota trekų, kai jie tankūs, savitarpio
įtakos priklausomybė nuo apšvitos indukuotų medžiagos pokyčių
aplink jonų takus. Parodyta, kad ėsdintų trekų morfologija
nepasikeičia po 30 min trunkančio atkaitinimo 900
C
temperatūroje.
References / Nuorodos
[1] S.A. Durrani and R.K. Bull, Solid State Nuclear Track
Detection: Principles, Methods and Applications (Pergamon
Press, New York, 1987),
http://www.amazon.co.uk/Solid-State-Nuclear-Track-Detection/dp/0080206050/
[2] R. Spohr, Ion Tracks and Microtechnology: Principles and
Applications (Vieweg Verlag, Wiesbaden, Germany, 1990),
http://dx.doi.org/10.1007/978-3-322-83103-3
[3] M. Toulemonde, C. Dufour, A. Meftah, and E. Paumier, Nucl.
Instrum. Methods B 166–167, 903 (2000),
http://dx.doi.org/10.1016/S0168-583X(99)00799-5
[4] G. Szenes, Phys. Rev. B 51, 8026 (1995),
http://dx.doi.org/10.1103/PhysRevB.51.8026
[5] M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, and A.
Weidinger, Nucl. Instrum. Methods B 216, 1 (2004),
http://dx.doi.org/10.1016/j.nimb.2003.11.013
[6] J.-H. Zollondz and A.Weidinger, Nucl. Instrum. Methods B 225,
178 (2004),
http://dx.doi.org/10.1016/j.nimb.2004.03.011
[7] J. Chen and R. Könenkamp, Appl. Phys. Lett. 83, 4782
(2003),
http://dx.doi.org/10.1063/1.1587258
[8] M. Sima, I. Enculesku, C. Trautmann, and R. Neumann, J.
Optoelectron. Adv. Mater. 6(1), 121 (2004),
http://joam.inoe.ro/arhiva/pdf6_1/Sima.pdf
[9] A. Sigrist and R. Balzer, Helv. Phys. Acta 50, 49
(1977),
http://retro.seals.ch/digbib/view2?pid=hpa-001:1977:50::55
[10] J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping
and Range of Ions in Solids (Pergamon Press, New York, 1985),
http://www.amazon.co.uk/Stopping-Range-Ions-Solids-Matter/dp/008021603X/
[11] C. Milanez Silva, P. Varisco, A. Moehlecke, P.P. Fichtner, R.M.
Papaleo, and J. Eriksson, Nucl. Instrum. Methods B 206, 486
(2003),
http://dx.doi.org/10.1016/S0168-583X(03)00803-6
[12] B. Canut, M.G. Blanchin, S. Ramos-Canut, V. Teodoresku, and M.
Toulemonde, Nucl. Instrum. Methods B 245, 327 (2006),
http://dx.doi.org/10.1016/j.nimb.2005.11.123
[13] P.Yu. Apel, A.P. Akimenko, I.V. Blonskaya, O.L. Orelovitch, R.
Spohr, and C. Trautmann, in: Abstracts of the Sixth
International Symposium on Swift Heavy Ions in Matter (SHIM'2005),
Aschaffenburg, Germany, 28–31 May 2005, p. B-130,
https://www-alt.gsi.de/conferences/SHIM2005S/proceedings.pdf
[14] P.Yu. Apel, A.P. Akimenko, I.V. Blonskaya, T. Cornelius, R.
Neumann, K. Schwartz, R. Spohr, and C. Trautmann, Nucl. Instrum.
Methods B 245, 284 (2006),
http://dx.doi.org/10.1016/j.nimb.2005.11.164
[15] C. Trautmann, K. Schwartz, and T. Steckenreiter, Nucl. Instrum.
Methods B 156, 162 (1999),
http://dx.doi.org/10.1016/S0168-583X(99)00247-5
[16] A. Hida, A. Iwase, Y. Mera, T. Kambara, and K. Maeda, Nucl.
Instrum. Methods B 209, 140 (2003),
http://dx.doi.org/10.1016/S0168-583X(02)01999-7