[PDF]
http://dx.doi.org/10.3952/lithjphys.49114
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 85–90 (2009)
INFLUENCE OF PLASMA JET
TEMPERATURE ON THE SYNTHESIS AND STRUCTURE OF YSZ COATINGS
Ž. Kavaliauskas, K. Brinkienė, J. Čėsnienė, and R. Kėželis
Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas,
Lithuania
E-mail: zydrunas@mail.lei.lt
Received 26 September 2008; revised 2 February
2009; accepted 19 March 2009
The paper describes a process for
preparation of yttria stabilized zirconia (YSZ) coatings by plasma
spray technique employing non-equilibrium plasma spray technology
at atmospheric pressure. Yttria-stabilized zirconia (10–15 wt.% Y
2O
3)
powders (10–105
m in
diameter) have been used. Plasma sprayed coatings have been
characterized using scanning electron microscope (SEM) and X-ray
diffractometer (XRD) for the microstructural study and phase
analysis as a part of a process optimisation study. The dependence
of microstructure of coatings on initial powder characteristics
and the influence of deposition temperature in the range of
3000–3350
C
on the structural characteristics of plasma sprayed coatings were
investigated. By the data of XRD analysis, all samples were
obtained with cubic crystal orientation. It has been found that
crystallite size has tendency to decrease with increasing the
deposition temperature. YSZ deposited at 3150–3350
C
are found to have a nanocrystalline structure with average
crystallite size of 75 nm. The samples sprayed using
coarse-grained powder feed are characterized by larger grain size
and crystallite size. The main parameters influencing the coating
formation are the properties of the initial powder and the plasma
process temperature. The SEM analysis showed that the best
temperature region for the deposition of YSZ coatings was about
3200–3350
C.
Keywords: coatings, plasma spraying,
microstructure-final, XRD, ZrO2
PACS: 52.77.Bn, 68.55.J-, 68.90.+g
PLAZMOS SRAUTO TEMPERATŪROS
ĮTAKA YSZ DANGŲ FORMAVIMUI IR STRUKTŪRAI
Ž. Kavaliauskas, K. Brinkienė, J. Čėsnienė, R. Kėželis
Lietuvos energetikos institutas, Kaunas, Lietuva
Tirti plazminių itriu stabilizuoto cirkonio
oksido (YSZ) dangų formavimo ypatumai ir vertintos dangų
struktūros charakteristikos. Cirkonio oksido dangos gautos
plazminio purškimo būdu, taikant nepusiausviros oro plazmos
technologiją. Purškimui naudoti 44–105
μm dydžio YSZ
(10–15 svorio % Y
2O
3) milteliai. Dangos
analizuotos rentgeno difrakcijos (XRD) ir skenuojančios
elektroninės mikroskopijos (SEM) metodais. Pateikta gautų dangų
struktūros, fazinės sudėties bei kristalitų dydžio priklausomybė
nuo plazmos srauto temperatūros ir žaliavos miltelių smulkumo.
Nustatyta, kad dangų struktūrą sudaro kubinės gardelės
nanometrinio dydžio cirkonio oksido kristalitai, kurių dydis
mažėja, didėjant plazmos srauto temperatūrai. Pastebėtas nedidelis
kristalitų dydžio padidėjimas naudojant stambesnės frakcijos YSZ
miltelius. Nustatyta, kad didžiausią įtaką plazminiu būdu
formuojamų YSZ dangų struktūrai turi purškimui naudojamų miltelių
charakteristikos bei plazmos srauto temperatūra. Remiantis
atliktais tyrimais, optimali plazmos srauto temperatūra YSZ
dangoms formuoti yra 3200–3350
C.
References / Nuorodos
[1] O. Yamamoto, Solid oxide fuel cells: Fundamental aspects and
prospects, Electrochim. Acta 45, 2423–2435, (2000),
http://dx.doi.org/10.1016/S0013-4686(00)00330-3
[2] K.A. Khor, Z.L. Dong, and Y.W. Gu, Plasma sprayed functionally
graded thermal barrier coatings, Mater. Lett. 38, 437–444
(1999),
http://dx.doi.org/10.1016/S0167-577X(98)00203-1
[3] I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine, Influence of
yttria content upon electrical properties and susceptibility to
ageing of yttria-stabilised zirconias, J. Eur. Ceram. Soc. 18,
661–667 (1998),
http://dx.doi.org/10.1016/S0955-2219(97)00173-8
[4] W.E. Lee and W.M. Rainforth, Ceramic Microstructures:
Property Control by Processing (Chapman & Hall, London,
1994) p. 317,
http://www.springer.com/gp/book/9780412431401
[5] R. Vaßen, N. Czech, W. Malléner, W. Stamm, and D. Stöver,
Influence of impurity content and porosity of plasma-sprayed
yttria-stabilized zirconia layers on the sintering behaviour, Surf.
Coatings Technol. 141, 135–140 (2001),
http://dx.doi.org/10.1016/S0257-8972(01)01269-5
[6] G. Laukaitis, J. Dudonis, and D. Milcius, YSZ thin films
deposited by e-beam technique, Thin Solid Films 515, 678–682
(2006),
http://dx.doi.org/10.1016/j.tsf.2005.12.242
[7] T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, B.M. Cetegen, M.
Gell, X. Ma, and N.P. Padture, Mechanisms of ceramic coating
deposition in solution-precursor plasma spray, J. Mater. Res. 17,
2363–2372 (2002),
http://dx.doi.org/10.1557/JMR.2002.0346
[8] X.-J. Ning, C.-X. Li, C.-J. Li, and G.-J. Yang, Effect of powder
structure on microstructure and electrical properties of
plasma-sprayed 4.5 mol% YSZ coating, Vacuum 80, 1261–1265
(2006),
http://dx.doi.org/10.1016/j.vacuum.2006.01.030
[9] V. Valincius, P. Valatkevicius, and L.L. Pranevicius, Employment
of electric arc for cover deposition, Electron. Electr. Eng. No. 1(19),
26–29 (1999),
http://www.ee.ktu.lt/page.php?133
[10] A. Ambrazevičius, Heat Transfer During Quenching of Gases
(Vilnius, Mokslas, 1983) pp. 174–192 [in Russian]
[11] S. Krumm, An interactive Windows program for profile fitting
and size/strain analysis, Mater. Sci. Forum 228–231, 183–188
(1996),
http://dx.doi.org/10.4028/www.scientific.net/MSF.228-231.183
[12] X.J. Lu and P. Xiao, Constrained sintering of YSZ/Al2O3
composite coatings on metal substrates produced from electrophoretic
deposition, J. Eur. Ceram. Soc. 27, 2613–2621 (2007),
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.09.016
[13] H. Hamatani, N. Shimoda, and S. Kitaguchi, Effect of the
composition profile and density of LPPS sprayed functionally graded
coating on the thermal shock resistance, Sci. Technol. Adv. Mater. 4,
197–203 (2003),
http://dx.doi.org/10.1016/S1468-6996(03)00023-8
[14] C. Zhang, C.-J. Li, G. Zhang, X.-J. Ning, C.-X Li, H. Liao, and
C. Coddet, Ionic conductivity and its temperature dependence of
atmospheric plasma-sprayed yttria stabilized zirconia electrolyte,
Mater. Sci. Eng. B 137, 24–30 (2007),
http://dx.doi.org/10.1016/j.mseb.2006.10.005
[15] H.E. Eaton and P. Zajchowski, High temperature particulate
erosion of plasma sprayed YSZ versus selected powder characteristics
and plasma torch designs, Surf. Coatings Technol. 120–121,
28–33 (1999),
http://dx.doi.org/10.1016/S0257-8972(99)00335-7
[16] D.S. Almeida, C.R.M. Silva, M.C.A. Nono, and C.A.A. Cairo,
EB–PVD TBCs of zirconia co-doped with yttria and niobia, a
microstructural investigation, Surf. Coatings Technol. 200,
2827–2833 (2006),
http://dx.doi.org/10.1016/j.surfcoat.2005.04.051