[PDF]
http://dx.doi.org/10.3952/lithjphys.49115
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 69–74 (2009)
EFFECT OF LONG-TERM AGING ON
SERIES RESISTANCE AND JUNCTION CONDUCTIVITY OF HIGH-POWER InGaN
LIGHT-EMITTING DIODES
Z. Vaitonis, A. Miasojedovas, A. Novičkovas, S. Sakalauskas, and
A. Žukauskas
Institute of Materials Science and Applied Research, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: zenonas.vaitonis@ff.vu.lt
Received 12 December 2008; revised
13 March 2009; accepted 19 March 2009
The forward voltage, series
resistance, and junction conductivity of commercial high-power
InGaN light-emitting diodes (LEDs) were investigated as a function
of aging time. A gradual decrease of series resistance with a rate
of about –1%/1000 h was revealed in InGaN LEDs within first ~9,600
hours of aging under ordinary conditions (nominal forward current
350 mA, junction temperature 350 K), whereas the characteristic
energy of tunnel injection exhibited a decrease with a rate of
about –0.1%/1000 h. The observed aging effects were attributed to
continuous post-fabrication self-annealing of the p-type
cladding layer and to the variation of the localized-state density
in the active layer of the LED chips.
Keywords: aging, high-power LED, series
resistance, junction conductivity
PACS: 81.40.Cd, 85.60.Bt, 85.60.Jb, 84.37.+q, 73.40.Kp
SENĖJIMO ĮTAKA DIDELĖS GALIOS
InGaN ŠVIESOS DIODŲ NUOSEKLIAJAI VARŽAI IR SANDŪROS LAIDUMUI
Z. Vaitonis, A. Miasojedovas, A. Novičkovas, S. Sakalauskas, A.
Žukauskas
Vilniaus universiteto Medžiagotyros ir taikomųjų mokslų
institutas
Tirti didelės galios šviesos diodų tiesioginės
įtampos, nuosekliosios varžos bei sandūros laidumo pokyčiai
vykstant senėjimo procesui. Po ~9600 valandų sendinimo normaliomis
darbo sąlygomis (tiesioginė srovė 350 mA, sandūros temperatūra
apie 350 K), nustatytas dėsningas, –1 % / 1000 val., nuosekliosios
varžos mažėjimas ir –0.1 % / 1000 val. tunelinės injekcijos į
aktyviąją sritį charakteringos energijos mažėjimas. Pastebėti
kitimai gali būti susiję su savaiminiu diodo p sluoksnio
atkaitinimu ir lokalizuotųjų būsenų tankio kitimu aktyviojoje
srityje.
References / Nuorodos
[1] M.S. Shur and A. Žukauskas, Solid-state lighting: Toward
superior illumination, Proc. IEEE 93(10), 1691–1703 (2005),
http://dx.doi.org/10.1109/JPROC.2005.853537
[2] T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Optical
degradation of InGaN / AlGaN light-emitting diode on sapphire
substrate grown by metalorganic chemical vapor deposition, Appl.
Phys. Lett. 69(6), 830–833 (1996),
http://dx.doi.org/10.1063/1.117906
[3] T. Yanagisawa, Estimation of the degradation of InGaN / AlGaN
blue light-emitting diodes, Microelectron. Reliab. 37(8),
1239–1241 (1997),
http://dx.doi.org/10.1016/S0026-2714(96)00288-0
[4] N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, and L. Deng,
Solid-state lighting: Failure analysis of white LEDs, J. Cryst.
Growth 268(3–4), 449–456 (2004),
http://dx.doi.org/10.1016/j.jcrysgro.2004.04.071
[5] Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, and M.
Asif Khan, Optical power degradation mechanisms in AlGaN-based 280
nm deep ultraviolet light-emitting diodes on sapphire, Appl. Phys.
Lett. 88(12), 121106-1–3 (2006),
http://dx.doi.org/10.1063/1.2187429
[6] T. Egawa, T. Jimbo, and M. Umeno, Characteristics of InGaN /
AlGaN light-emitting diodes on sapphire substrates, J. Appl. Phys. 82(11),
5816–5821 (1997),
http://dx.doi.org/10.1063/1.366450
[7] M. Osiński, D.L. Barton, P. Perlin, and J. Lee, Effects of high
electrical stress on GaN / InGaN / AlGaN single-quantum-well
light-emitting diodes, J. Cryst. Growth 189–190,
808–811 (1998),
http://dx.doi.org/10.1016/S0022-0248(98)00299-1
[8] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K.
Streubel, Identification of aging mechanisms in the optical and
electrical characteristics of light-emitting diodes, Appl. Phys.
Lett. 79(18), 2895–2897 (2001),
http://dx.doi.org/10.1063/1.1413721
[9] T. Yanagisawa and T. Kojima, Degradation of InGaN blue
light-emitting diodes under continuous and low-speed operations,
Microelectron. Reliab. 43(6), 977–980 (2003),
http://dx.doi.org/10.1016/S0026-2714(03)00093-3
[10] M. Meneghini, S. Podda, A. Morelli, R. Pintus, L. Trevisanello,
G. Meneghesso, M. Vanzi, and E. Zanoni, High brightness GaN LEDs
degradation during dc and pulsed stress, Microelectron. Reliab. 46(9–11),
1720–1724 (2006),
http://dx.doi.org/10.1016/j.microrel.2006.07.050
[11] M. Osiński, J. Zeller, P.-C. Chiu, B.S. Phillips, and D.L.
Barton, AlGaN / InGaN / GaN blue light emitting diode degradation
under pulsed current stress, Appl. Phys. Lett. 69(7), 898–900
(1996),
http://dx.doi.org/10.1063/1.116936
[12] J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O'Shea, M.J.
Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P.S. Martin, S.
Subramanya, W. Götz, N.F. Gardner, R.S. Kern, and S.A. Stockman,
High power AlGaInN flip-chip light-emitting diodes, Appl. Phys.
Lett. 78(22), 3379–3381 (2001),
http://dx.doi.org/10.1063/1.1374499
[13] Technical Datasheet DS23,
http://www.lumileds.com/pdfs/ds23.pdf
[14] Z. Vaitonis, P. Vitta, and A. Žukauskas, Measurement of the
junction temperature in high-power light-emitting diodes from
high-energy wing of the electroluminescence band, J. Appl. Phys.
103(9), 093110-1–7 (2008),
http://dx.doi.org/10.1063/1.2908176
[15] LED Lifetime for General Lighting, ASSIST Recommends 1(1)
(Lighting Research Center, 2005),
http://www.lrc.rpi.edu/
[16] Y. Xi, J.-Q. Xi, T. Gessmann, J.M. Shah, J.K. Kim, E.F.
Schubert, A.J. Fischer, M.H. Crawford, K.H.A. Bogart, and A.A.
Allerman, Junction and carrier temperature measurements in
deep-ultraviolet light-emitting diodes using three different
methods, Appl. Phys. Lett. 86(3), 031907-1–3 (2005),
http://dx.doi.org/10.1063/1.1849838
[17] H.C. Casey, Jr., J. Muth, S. Krishnankutty, and J.M. Zavada,
Dominance of tunneling current and band filling in InGaN / AlGaN
double heterostructure blue light-emitting diodes, Appl. Phys. Lett.
68(20), 2867–2869 (1996),
http://dx.doi.org/10.1063/1.116351
[18] P. Perlin, M. Osiński, P.G. Eliseev, V.A. Smagley, J. Mu, M.
Banas, and P. Sartori, Low-temperature study of current and
electroluminescence in InGaN / AlGaN / GaN double-heterostructure
blue light-emitting diodes, Appl. Phys. Lett. 69(12), 1680–1682
(1996),
http://dx.doi.org/10.1063/1.117026
[19] A. Žukauskas, M.S. Shur, and R. Gaska, Introduction to
Solid-State Lighting (Wiley, New York, 2002),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471215740.html
[20] E.F. Schubert, Light-Emitting Diodes (Cambridge
University Press, Cambridge, 2006),
http://dx.doi.org/10.1017/CBO9780511790546
[21] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, J. Kim, B. Luo, R.
Mehandru, F. Ren, K.P. Lee, S.J. Pearton, A.V. Osinsky, and P.E.
Norris, Enhanced tunneling in GaN / InGaN multi-quantum-well
heterojunction diodes after short-term injection annealing, J. Appl.
Phys. 91(8), 5203–5207 (2002),
http://dx.doi.org/10.1063/1.1465119
[22] F. Manyakhin, A. Kovalev, and A.E. Yunovich, Aging mechanisms
of InGaN / AlGaN / GaN light-emitting diodes operating at high
currents, MRS Internet J. Nitride Semicond. Res. 3, e53
(1998),
http://dx.doi.org/10.1557/S1092578300001253
[23] M. Pavesi, M. Manfredi, G. Salviati, N. Armani, F. Rossi, G.
Meneghesso, S. Levada, E. Zanoni, S.Du, and I. Eliashevich, Optical
evidence of an electrothermal degradation of InGaN-based
light-emitting diodes during electrical stress, Appl. Phys. Lett. 84(17),
3403–3405 (2004),
http://dx.doi.org/10.1063/1.1734682
[24] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Hole
compensation mechanism of p-type GaN, Jpn. J. Appl. Phys. 31(5A),
1258–1266 (1992),
http://dx.doi.org/10.1143/JJAP.31.1258
[25] S.J. Pearton, J.W. Lee, and C. Yuan, Minority-carrier-enhanced
reactivation of hydrogen-passivated Mg in GaN, Appl. Phys. Lett. 68(19),
2690–2692 (1996),
http://dx.doi.org/10.1063/1.116310
[26] M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, The activation of
Mg in GaN by annealing with minority-carrier injection, Appl. Phys.
Lett. 72(9), 1101–1103 (1998),
http://dx.doi.org/10.1063/1.120936