[PDF]    http://dx.doi.org/10.3952/lithjphys.49201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 237–246 (2009)


CRITICAL LOADS OF SULPHUR AND NITROGEN FOR TERRESTRIAL ECOSYSTEMS IN LITHUANIA
V. Ulevičius, S. Byčenkienė, and K. Senuta
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt

Received 8 January 2009; accepted 19 March 2009

This paper presents the deposition variation of sulphur and nitrogen compounds and the exceedance of their critical loads for terrestrial ecosystems. The analysis is based on a steady-state approach, involving the comparison of deposition fluxes with critical loads to identify areas where critical loads are exceeded. The critical load concept is widely used as a tool for developing emission control policies in Europe. Critical loads for acidity, nitrogen, and sulphur have been calculated for Lithuania as a signatory country of the Convention of Long-Range Transboundary Air Pollution. In addition, the comparison of sulphur deposition with critical loads for eutrophication yielded an exceedance in southern, southeastern, southwestern, and central parts of Lithuanian ecosystems. Deposition of sulphur as well as oxidized and reduced nitrogen from anthropogenic sources remains low over the central and some northern part of the country but are signicant in eastern areas.
Keywords: nitrogen, sulphur, critical loads, deposition, ecosystems, mass balance method
PACS: 91.62.Mn, 92.20.jp


SIEROS IR AZOTO JUNGINIŲ KRITINIŲ APKROVŲ LIETUVOS SAUSUMOS EKOSISTEMOMS ĮVERTINIMAS
V. Ulevičius, S. Byčenkienė, and K. Senuta
Fizikos institutas, Vilnius, Lietuva

Pateikta kiekybinė sieros ir azoto junginių kritinių apkrovų Lietuvos ekosistemoms analizė. Įvertinant azoto junginių kritines apkrovas miškų ekosistemoms naudotas masės balanso metodas, leidžiantis nustatyti rajonus, kur tos apkrovos yra viršytos. Kritinių apkrovų koncepcija yra plačiai naudojama, ieškant palankaus susitarimo tarp gamtosaugininkų ir valdžios institucijų, priimančių sprendimus dėl teršalų emisijos apribojimų. Teršalų srautų į ekosistemas kiekis bei kritinių apkrovų Lietuvoje dydis nustatytas vadovaujantis Tolimųjų tarpvalstybinių oro teršalų pernašų konvencija. Apskaičiuotas oksiduotos sieros kritinių apkrovų bei bendro nusėdimo srauto skirtumas, kurio neigiamos reikšmės atspindi apkrovų viršijimus. Rasta, kad jos yra viršijamos pietų, pietryčių, pietvakarių bei kai kuriuose šiauriniuose Lietuvos regionuose. Mažiausios oksiduotos sieros, oksiduoto ir redukuoto azoto kritinių apkrovų bei bendro nusėdimo srauto skirtumo vertės nustatytos centriniame ir kai kuriuose šiauriniuose Lietuvos regionuose.


References / Nuorodos


[1] Convention on Long-Range Transboundary Air Pollution (Geneva Convention),
http://www.unece.org/env/lrtap/full%20text/1979.CLRTAP.e.pdf
[2] Directive 2001/81/ec of the European Parliament and of the Council of 23 October 2001 on National Emission Ceilings for Certain Atmospheric Pollutants,
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:309:0022:0030:EN:PDF .
[3] D. Simpson, W. Winiwarter, G. Börjesson, S. Cinderby, A. Ferreiro, A. Guenther, C.N. Hewitt, R. Janson, M.A.K. Khalil, S. Owen, T.E. Pierce, H. Puxbaum, M. Shearer, U. Skiba, R. Steinbrecher, L. Tarrason, and M.G. Öquist, Inventorying emissions from nature in Europe, J. Geophys. Res. 104(D7), 8113–8152 (1999),
http://dx.doi.org/10.1029/98JD02747
[4] EMEP modelled air concentrations and depositions,
http://webdab.emep.int/Unified_Model_Results/AN/
[5] The World Health Report: Bridging the gaps (WHO, Geneva, 1995),
http://www.who.int/whr/1995/en/
[6] J.L. Stoddard, D.S. Jeffries, A. Lukewille, T.A. Clair, P.J. Dillon, C.T. Driscoll, M. Forsius, M. Johannessen, J.S. Kahl, J.H. Kellog, A. Kemp, J. Mannio, D.T. Monteith, P.S. Murdoch, S. Patrick, A. Rebsdorf, B.L. Skjelkvale, M.P. Stainton, T. Traaen, H.van Dam, K. E. Webster, J. Wieting, and A. Wilander, Regional trends in aquatic recovery from acidification in North America and Europe, Nature 401, 575–578 (1999),
http://dx.doi.org/10.1038/44114
[7] W. Schoopp, M. Posch, S. Mylona, and M. Johansson, Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe, Hydrol. Earth Syst. Sci. 7, 436–446 (2003),
http://dx.doi.org/10.5194/hess-7-436-2003
[8] G.W.J. van Lynden, European Soil Resources: Current Status of Soil Degradation, Causes, Impacts and Need for Action, Nature and Environment Report 71 (Council of Europe, Strasbourg, 1995),
http://www.amazon.co.uk/European-Soil-Resources-Degradation-Environment/dp/9287126836
[9] The Future of the Global Environment: A Model-based Analysis Supporting UNEP's First Global Environment Outlook, eds. J. Bakkes and J. van Worden, UNEP/DEIA/TR.97-1 (RIVM, 1997),
http://www.pbl.nl/en/publications/1997/The_Future_of_the_Global_Environment__A_Model-based_Analysis_Supporting_UNEP
[10] F. Dentener, J. Drevet, J.F. Lamarque, I. Bey, B. Eickhout, A.M. Fiore, D. Hauglustaine, L.W. Horowitz, M. Krol, U.C. Kulshrestha, M. Lawrence, C. Galy-Lacaux, S. Rast, D. Shindell, D. Stevenson, T. Van Noije, C. Atherton, N. Bell, D. Bergman, T. Butler, J. Cofala, B. Collins, R. Doherty, K. Ellingsen, J. Galloway, M. Gauss, V. Montanaro, J.F. Müller, G. Pitari, J. Rodriguez, M. Sanderson, F. Solmon, S. Strahan, M. Schultz, K. Sudo, S. Szopa, and O. Wild, Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB 4003 (2006),
http://dx.doi.org/10.1029/2005GB002672
[11] W. de Vries, J. Kros, G.J. Reinds, W. Wamelink, H. van Dobben, R. Bobbink, B. Emmett, S. Smart, C. Evans, A. Schlutow, P. Kraft, S. Belyazid, H.U. Sverdrup, A. van Hinsberg, M. Posch, and J.P. Hettelingh, Developments in deriving critical limits modelling critical nitrogen loads for terrestrial ecosystems in Europe, Alterra Report 1382 (Wageningen, The Netherlands, 2007),
http://www.academia.edu/17204770/Developments_in_deriving_critical_limits_and_modelling_critical_loads_of_nitrogen_for_terrestrial_ecosystems_in_Europe
[12] W. de Vries, M. Posch, G.J. Reinds, and J. Kämäri, Critical loads and their exceedance on forest soils in Europe, Report 58, DLO Winand Staring Centre (Wageningen, The Netherlands, 1993)
[13] W. de Vries, G.J. Reinds, M. Posch, and J. Kämäri, Simulation of soil response to acidic deposition scenarios in Europe. Water Air Soil Pollut. 78, 215–246 (1994),
http://dx.doi.org/10.1007/BF00483034
[14] J.C. Dutch and P. Ineson, Denitrification of an upland forest site, Forestry 63, 373–377 (1990),
http://dx.doi.org/10.1093/forestry/63.4.363
[15] UNECE: Emission inventories and projections, progress report by the Co-Chairs of the Task Force prepared in consultation with the secretariat. Annex III: Draft methods and procedures for the technical review of air pollutant emission inventories reported under the Convention and its protocols (EB.AIR/GE.1/2005/7, 2005),
http://www.unece.org/env/eb/welcome.html
[16] EEA aggregated and gap-filled air emission dataset, based on 2008 officially reported national total and sectoral emissions to UNECE/EMEP Convention on Long-Range Transboundary Atmospheric Pollution. 2010 NEC Directive projections data: EEA Directive status report 2007, Technical report No. 9/2008 (EEA, 2007)
[17] V. Vestreng, E. Rigler, M. Adams, K. Kindbom, J.M. Pacyna, H. Denier van der Gon, S. Reis, and O. Travnikov, Inventory review 2006, Emission data reported to LRTAP and NEC Directive, Stage 1, 2 and 3 review and Evaluation of inventories of HM and POPs, EMEP/MSC-W Technical Report 1/2006 (EMEP, 2006),
http://www.emep.int/
[18] D. Fowler, M.A. Sutton, C. Flechard, J.N. Cape, R. Storeton-West, M. Coyle, and R.I. Smith, The control of SO2 dry deposition on natural surfaces by NH3 and its effect on regional deposition, Water Air Soil Pollut. 1, 39–48 (2001),
http://dx.doi.org/10.1023/A:1013161912231
[19] H. Sverdrup and W. de Vries, Calculating critical loads for acidity with the simple mass balance method,Water Air Soil Pollut. 72, 143–162 (1994),
http://dx.doi.org/10.1007/BF01257121