[PDF]
http://dx.doi.org/10.3952/lithjphys.49201
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 237–246 (2009)
CRITICAL LOADS OF SULPHUR AND
NITROGEN FOR TERRESTRIAL ECOSYSTEMS IN LITHUANIA
V. Ulevičius, S. Byčenkienė, and K. Senuta
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: ulevicv@ktl.mii.lt
Received 8 January 2009; accepted
19 March 2009
This paper presents the deposition
variation of sulphur and nitrogen compounds and the exceedance of
their critical loads for terrestrial ecosystems. The analysis is
based on a steady-state approach, involving the comparison of
deposition fluxes with critical loads to identify areas where
critical loads are exceeded. The critical load concept is widely
used as a tool for developing emission control policies in Europe.
Critical loads for acidity, nitrogen, and sulphur have been
calculated for Lithuania as a signatory country of the Convention
of Long-Range Transboundary Air Pollution. In addition, the
comparison of sulphur deposition with critical loads for
eutrophication yielded an exceedance in southern, southeastern,
southwestern, and central parts of Lithuanian ecosystems.
Deposition of sulphur as well as oxidized and reduced nitrogen
from anthropogenic sources remains low over the central and some
northern part of the country but are signicant in eastern areas.
Keywords: nitrogen, sulphur, critical
loads, deposition, ecosystems, mass balance method
PACS: 91.62.Mn, 92.20.jp
SIEROS IR AZOTO JUNGINIŲ
KRITINIŲ APKROVŲ LIETUVOS SAUSUMOS EKOSISTEMOMS ĮVERTINIMAS
V. Ulevičius, S. Byčenkienė, and K. Senuta
Fizikos institutas, Vilnius, Lietuva
Pateikta kiekybinė sieros ir azoto junginių
kritinių apkrovų Lietuvos ekosistemoms analizė. Įvertinant azoto
junginių kritines apkrovas miškų ekosistemoms naudotas masės
balanso metodas, leidžiantis nustatyti rajonus, kur tos apkrovos
yra viršytos. Kritinių apkrovų koncepcija yra plačiai naudojama,
ieškant palankaus susitarimo tarp gamtosaugininkų ir valdžios
institucijų, priimančių sprendimus dėl teršalų emisijos
apribojimų. Teršalų srautų į ekosistemas kiekis bei kritinių
apkrovų Lietuvoje dydis nustatytas vadovaujantis Tolimųjų
tarpvalstybinių oro teršalų pernašų konvencija. Apskaičiuotas
oksiduotos sieros kritinių apkrovų bei bendro nusėdimo srauto
skirtumas, kurio neigiamos reikšmės atspindi apkrovų viršijimus.
Rasta, kad jos yra viršijamos pietų, pietryčių, pietvakarių bei
kai kuriuose šiauriniuose Lietuvos regionuose. Mažiausios
oksiduotos sieros, oksiduoto ir redukuoto azoto kritinių apkrovų
bei bendro nusėdimo srauto skirtumo vertės nustatytos centriniame
ir kai kuriuose šiauriniuose Lietuvos regionuose.
References / Nuorodos
[1] Convention on Long-Range Transboundary Air Pollution (Geneva
Convention),
http://www.unece.org/env/lrtap/full%20text/1979.CLRTAP.e.pdf
[2] Directive 2001/81/ec of the European Parliament and of the
Council of 23 October 2001 on National Emission Ceilings for Certain
Atmospheric Pollutants,
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:309:0022:0030:EN:PDF
.
[3] D. Simpson, W. Winiwarter, G. Börjesson, S. Cinderby, A.
Ferreiro, A. Guenther, C.N. Hewitt, R. Janson, M.A.K. Khalil, S.
Owen, T.E. Pierce, H. Puxbaum, M. Shearer, U. Skiba, R.
Steinbrecher, L. Tarrason, and M.G. Öquist, Inventorying emissions
from nature in Europe, J. Geophys. Res. 104(D7), 8113–8152
(1999),
http://dx.doi.org/10.1029/98JD02747
[4] EMEP modelled air concentrations and depositions,
http://webdab.emep.int/Unified_Model_Results/AN/
[5] The World Health Report: Bridging the gaps (WHO, Geneva, 1995),
http://www.who.int/whr/1995/en/
[6] J.L. Stoddard, D.S. Jeffries, A. Lukewille, T.A. Clair, P.J.
Dillon, C.T. Driscoll, M. Forsius, M. Johannessen, J.S. Kahl, J.H.
Kellog, A. Kemp, J. Mannio, D.T. Monteith, P.S. Murdoch, S. Patrick,
A. Rebsdorf, B.L. Skjelkvale, M.P. Stainton, T. Traaen, H.van Dam,
K. E. Webster, J. Wieting, and A. Wilander, Regional trends in
aquatic recovery from acidification in North America and Europe,
Nature 401, 575–578 (1999),
http://dx.doi.org/10.1038/44114
[7] W. Schoopp, M. Posch, S. Mylona, and M. Johansson, Long-term
development of acid deposition (1880–2030) in sensitive freshwater
regions in Europe, Hydrol. Earth Syst. Sci. 7, 436–446
(2003),
http://dx.doi.org/10.5194/hess-7-436-2003
[8] G.W.J. van Lynden, European Soil Resources: Current Status
of Soil Degradation, Causes, Impacts and Need for Action,
Nature and Environment Report 71 (Council of Europe, Strasbourg,
1995),
http://www.amazon.co.uk/European-Soil-Resources-Degradation-Environment/dp/9287126836
[9] The Future of the Global Environment: A Model-based Analysis
Supporting UNEP's First Global Environment Outlook, eds. J.
Bakkes and J. van Worden, UNEP/DEIA/TR.97-1 (RIVM, 1997),
http://www.pbl.nl/en/publications/1997/The_Future_of_the_Global_Environment__A_Model-based_Analysis_Supporting_UNEP
[10] F. Dentener, J. Drevet, J.F. Lamarque, I. Bey, B. Eickhout,
A.M. Fiore, D. Hauglustaine, L.W. Horowitz, M. Krol, U.C.
Kulshrestha, M. Lawrence, C. Galy-Lacaux, S. Rast, D. Shindell, D.
Stevenson, T. Van Noije, C. Atherton, N. Bell, D. Bergman, T.
Butler, J. Cofala, B. Collins, R. Doherty, K. Ellingsen, J.
Galloway, M. Gauss, V. Montanaro, J.F. Müller, G. Pitari, J.
Rodriguez, M. Sanderson, F. Solmon, S. Strahan, M. Schultz, K. Sudo,
S. Szopa, and O. Wild, Nitrogen and sulfur deposition on regional
and global scales: A multimodel evaluation, Global Biogeochem.
Cycles, 20, GB 4003 (2006),
http://dx.doi.org/10.1029/2005GB002672
[11] W. de Vries, J. Kros, G.J. Reinds, W. Wamelink, H. van Dobben,
R. Bobbink, B. Emmett, S. Smart, C. Evans, A. Schlutow, P. Kraft, S.
Belyazid, H.U. Sverdrup, A. van Hinsberg, M. Posch, and J.P.
Hettelingh, Developments in deriving critical limits modelling
critical nitrogen loads for terrestrial ecosystems in Europe,
Alterra Report 1382 (Wageningen, The Netherlands, 2007),
http://www.academia.edu/17204770/Developments_in_deriving_critical_limits_and_modelling_critical_loads_of_nitrogen_for_terrestrial_ecosystems_in_Europe
[12] W. de Vries, M. Posch, G.J. Reinds, and J. Kämäri, Critical
loads and their exceedance on forest soils in Europe, Report
58, DLO Winand Staring Centre (Wageningen, The Netherlands, 1993)
[13] W. de Vries, G.J. Reinds, M. Posch, and J. Kämäri, Simulation
of soil response to acidic deposition scenarios in Europe. Water Air
Soil Pollut. 78, 215–246 (1994),
http://dx.doi.org/10.1007/BF00483034
[14] J.C. Dutch and P. Ineson, Denitrification of an upland forest
site, Forestry 63, 373–377 (1990),
http://dx.doi.org/10.1093/forestry/63.4.363
[15] UNECE: Emission inventories and projections, progress
report by the Co-Chairs of the Task Force prepared in consultation
with the secretariat. Annex III: Draft methods and procedures for
the technical review of air pollutant emission inventories
reported under the Convention and its protocols
(EB.AIR/GE.1/2005/7, 2005),
http://www.unece.org/env/eb/welcome.html
[16] EEA aggregated and gap-filled air emission dataset, based
on 2008 officially reported national total and sectoral emissions
to UNECE/EMEP Convention on Long-Range Transboundary Atmospheric
Pollution. 2010 NEC Directive projections data: EEA Directive
status report 2007, Technical report No. 9/2008 (EEA, 2007)
[17] V. Vestreng, E. Rigler, M. Adams, K. Kindbom, J.M. Pacyna, H.
Denier van der Gon, S. Reis, and O. Travnikov, Inventory review
2006, Emission data reported to LRTAP and NEC Directive, Stage 1,
2 and 3 review and Evaluation of inventories of HM and POPs,
EMEP/MSC-W Technical Report 1/2006 (EMEP, 2006),
http://www.emep.int/
[18] D. Fowler, M.A. Sutton, C. Flechard, J.N. Cape, R.
Storeton-West, M. Coyle, and R.I. Smith, The control of SO2
dry deposition on natural surfaces by NH3 and its effect
on regional deposition, Water Air Soil Pollut. 1, 39–48
(2001),
http://dx.doi.org/10.1023/A:1013161912231
[19] H. Sverdrup and W. de Vries, Calculating critical loads for
acidity with the simple mass balance method,Water Air Soil Pollut. 72,
143–162 (1994),
http://dx.doi.org/10.1007/BF01257121