[PDF]
http://dx.doi.org/10.3952/lithjphys.49202
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 229–236 (2009)
δ13C VALUES IN
SIZE-SEGREGATED ATMOSPHERIC CARBONACEOUS AEROSOLS AT A RURAL
SITE IN LITHUANIA
A. Garbaras, I. Rimšelytė, K. Kvietkus, and V. Remeikis
Institute of Physics, Savanorių 231, LT02300 Vilnius,
Lithuania
E-mail: garbaras@ar.fi.lt
Received 6 January 2009; accepted
19 March 2009
The investigations of the carbon
isotopic ratio in different size aerosol particles at the
Rūgšteliškis Integrated Monitoring Station (IMS) at the rural
site (Lithuania) during 10–24 July 2008 are presented. Total
carbon (TC) concentrations ranged from 0.06 to 0.35 μgm–3
and those of elemental carbon (EA) from 0.02 to 0.15 μgm–3
in accumulation mode, as well as from 0.06 to 0.14 μgm–3
and from 0.02 to 0.06 μgm–3 in coarse mode of
aerosol particles, respectively. Organic matter (OM) concentration
ranged from 1.0 to 25.4 μgm–3, with the average
value of 5.6 μgm–3. Carbon isotopic ratios
relative to standard for TC differ significantly in accumulation
and coarse modes (–28 and –24‰, respectively) and indicate a
different origin of size-segregated aerosol particles. Almost
constant organic carbon isotopic ratio (–31.8‰) indicates that OM
originates from local vegetation. Organic matter concentrations
and the carbon isotopic ratio measurements in the size-segregated
aerosol particles allow identifying sources of aerosol particles.
Keywords: carbon isotopes, carbonaceous
aerosols, size distribution of aerosol particles, composition, δ13C,
source apportionment
PACS: 92.20.Bk, 91.65.Dt, 91.62.La
ANGLIES IZOTOPŲ SANTYKIAI (δ13C)
ĮVAIRAUS DYDŽIO ANGLINGOSE AEROZOLIO DALELĖSE FONINĖJE LIETUVOS
VIETOVĖJE
A. Garbaras, I. Rimšelytė, K. Kvietkus, V. Remeikis
Fizikos institutas, Vilnius, Lietuva
Pateikti anglies izotopinio santykio įvairaus
dydžio aerozolio dalelėse Rūgšteliskio integruoto monitoringo
stotyje 2008 liepos 10–24 d. tyrimų duomenys. Nustatyta, kad
bendros anglies koncentracija kito nuo 0,06 iki 0,35 µgm-3,
o elementinės anglies – nuo 0,02 iki 0,15 µgm-3
aerozolio dalelių akumuliacinėje modoje bei atitinkamai nuo 0,06
iki 0,14 µgm-3 ir nuo 0,02 iki 0,06 µgm-3
stambiųjų aerozolio dalelių modoje. Tuo pačiu metu išmatuota
organinių medžiagų koncentracija aerozolio dalelėse buvo 1,0–25,4
µgm-3, o vidutinė vertė – 5,6 µgm-3.
Taikant HYSPLIT modelį oro masių pernašos atgalinių trajektorijų
skaičiavimui, nagrinėta aerozolių dalelių, atneštų oro masėmis į
nutolusią nuo antrpogeninės taršos šaltinių vietovę, kilmė,
siejant ją su išmatuotomis anglies izotopinių santykių vertėmis.
Bendrosios anglies izotopiniai santykiai akumuliacinėje ir
stambiųjų aerozolio dalelių modose žymiai skiriasi (–28 ‰ ir –24
‰, atitinkamai). Tai rodo, jog įvairaus dydžio aerozolio dalelės
yra skirtingos kilmės. Beveik pastovi organinės anglies izotopinio
santykio vertė (–31,8 ‰) rodo, jog aerozolio dalelėse esantys
organiniai junginiai emituoti vietinės augmenijos. Naudojant
organinių junginių koncentracijos matavimus aerozolių masių
spektrometrija ir stabilios anglies izotopų santykius įvairaus
dydžio aerozolio dalelėse, atsiranda galimybė identifikuoti
aerozolio dalelių kilmę ir vietinius bei globalius jų šaltinius.
References / Nuorodos
[1] D. Čeburnis, J. Ovadnevaitė, K. Kvietkus, V. Remeikis, and V.
Ulevičius, Aerosols, organics matter and impact on climate,
Lithuanian J. Phys. 45, 323–332 (2005),
http://dx.doi.org/10.3952/lithjphys.45510
[2] C.P. Chio and C.M. Liao, Assessment of atmospheric ultrafine
carbon particle-induced human health risk based on surface area
dosimetry, Atmos. Environ. 42, 8575–8584 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.027
[3] C. Alves, C. Pio, A. Carvalho, and C. Santos, Atmospheric
carbonaceous aerosols over grasslands of central Europe and a Boreal
forest, Chemosphere 63, 53–164 (2006),
http://dx.doi.org/10.1016/j.chemosphere.2005.07.004
[4] D. Widory, S. Roy, Y. Moulec, G. Goupil, A. Cochere, and C.
Guerrot, The origin of atmospheric particles in Paris: Aviewthrough
carbon and lead isotopes, Atmos. Environ. 38, 953–961
(2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.11.001
[5] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N.
Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments
of Lithuanian lakes, Nukleonika 50(2), 61–66 (2005),
http://www.nukleonika.pl/www/back/full/vol50_2005/v50n2p061f.pdf
[6] H. Cachier, P. Buat-Menard, M. Fontugne, and R. Chesselet,
Long-range transport of continentally derived particulate carbon to
the marine atmosphere: Evidence from stable carbon isotope studies,
Tellus 38B, 161–177 (1986),
http://dx.doi.org/10.1111/j.1600-0889.1986.tb00184.x
[7] A.L. Norman, J.F. Hopper, P. Blanchard, D. Ernst, K. Brice, N.
Alexandrou, and G. Klouda, The stable carbon isotope composition of
atmospheric PAHs, Atmos. Environ. 33, 2807–2814 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00358-6
[8] S.D. Kelly, C. Stein, and T.D. Jickells, Carbon and nitrogen
isotopic analysis of atmospheric organic matter, Atmos. Environ. 39,
6007–6011 (2005),
http://dx.doi.org/10.1016/j.atmosenv.2005.05.030
[9] L.A. Martinelli, P.B. Camargo, L.B.L.S. Lara, R.L.Victoria, and
P. Artaxo, Stable carbon and nitrogen isotopic composition of bulk
aerosol particles in a C4 plant landscape of southeast Brazil,
Atmos. Environ. 36, 2427–2432 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00454-X
[10] J.J. Cao, S.C. Lee, K.F. Ho, S.C. Zou, K. Fung, Y. Li,
J.G.Watson, and J.C. Chow, Spatial and seasonal variations of
atmospheric organic carbon and elemental carbon in Pearl River Delta
Region, China, Atmos. Environ. 38, 4447–4456 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.05.016
[11] A. Milukaitė, K. Kvietkus, and I. Rimšelytė, Organic and
elemental carbon in coastal aerosol of the Baltic Sea, Lithuanian J.
Phys. 47, 203–210 (2007),
http://dx.doi.org/10.3952/lithjphys.47205
[12] J.C. Chow, J.G. Watson, D.H. Lowenthal, and K.L. Magliano,
Size-resolved aerosol chemical concentrations at rural and urban
sites in Central California, USA, Atmos. Res. 90, 243–252
(2008),
http://dx.doi.org/10.1016/j.atmosres.2008.03.017
[13] HYSPLIT4 (Hybrid Single-Particle Lagrangian Integrated
Trajectory) Model, NOAA Air Resources Laboratory (Silver Spring,
MD., 1997),
http://www.arl.noaa.gov/ready/open/hysplit4.html
[14] A. Garbaras, J. Andriejauskienė, R. Barisevičiūtė, and V.
Remeikis, Tracing of atmospheric aerosol sources using stable carbon
isotopes, Lithuanian J. Phys. 48, 259–264 (2008),
http://dx.doi.org/10.3952/lithjphys.48309
[15] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and E.
Pesliakaitė, Chemical composition and size distribution of fine
aerosol particles on the east coast of the Baltic Sea, Lithuanian J.
Phys. 47, 523–529 (2007),
http://dx.doi.org/10.3952/lithjphys.47425
[16] F.W. McLafferty and F. Turecek, Interpretation of
Mass Spectra, 3nd ed. (University Science Books, Mill Valley,
CA., 1993),
http://www.amazon.co.uk/Interpretation-Mass-Spectra-Fred-McLafferty/dp/0935702253/
[17] M.R. Alfarra, A.S.H. Prevot, S. Szidat, J. Sandradewi, S.
Weimer, V.A. Lanz, D. Schreiber, M. Mohr, and U. Baltensperger,
Identification of the mass spectral signature of organic aerosols
from wood burning emissions, Environ. Sci. Technol. 41,
5770–5777 (2007),
http://dx.doi.org/10.1021/es062289b
[18] J.C. Cabada, S. Rees, S. Takahama, A.Y. Khlystov, S.N. Pandis,
C.I. Davidson, and A.L. Robinson, Mass size distributions and size
resolved chemical composition of fine particulate matter at the
Pittsburgh Supersite, Atmos. Environ. 38, 3127–3141 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.03.004
[19] R.M.B.O. Duarte, C.L. Mieiro, A. Penetra, C.A. Pio, and A.C.
Duarte, Carbonaceous materials in size-segregated atmospheric
aerosols from urban and coastal-rural areas at the Western European
Coast, Atmos. Res. 90, 253–263 (2008),
http://dx.doi.org/10.1016/j.atmosres.2008.03.003
[20] T. Gnauk, K. Müller, D. Pinxteren, L.Y. He, Y. Niu, M. Hu, and
H. Herrmann, Size-segregated particulate chemical composition in
Xinken, Pearl River Delta, China: OC=EC and organic compounds,
Atmos. Environ. 42, 6296–6309 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.05.001
[21] R. Fisseha, M. Saurer, M. Jäggi, R.T.W. Siegwolf, J. Dommen, S.
Szidat, V. Samburova, and U. Baltensperger, Determination of primary
and secondary sources of organic acids and carbonaceous aerosols
using stable carbon isotopes, Atmos. Environ. 43, 431–437
(2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.041