[PDF]    http://dx.doi.org/10.3952/lithjphys.49202

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 229–236 (2009)


δ13C VALUES IN SIZE-SEGREGATED ATMOSPHERIC CARBONACEOUS AEROSOLS AT A RURAL SITE IN LITHUANIA
A. Garbaras, I. Rimšelytė, K. Kvietkus, and V. Remeikis
Institute of Physics, Savanorių 231, LT–02300 Vilnius, Lithuania
E-mail: garbaras@ar.fi.lt

Received 6 January 2009; accepted 19 March 2009

The investigations of the carbon isotopic ratio in different size aerosol particles at the Rūgšteliškis Integrated Monitoring Station (IMS) at the rural site (Lithuania) during 10–24 July 2008 are presented. Total carbon (TC) concentrations ranged from 0.06 to 0.35 μgm–3 and those of elemental carbon (EA) from 0.02 to 0.15 μgm–3 in accumulation mode, as well as from 0.06 to 0.14 μgm–3 and from 0.02 to 0.06 μgm–3 in coarse mode of aerosol particles, respectively. Organic matter (OM) concentration ranged from 1.0 to 25.4 μgm–3, with the average value of 5.6 μgm–3. Carbon isotopic ratios relative to standard for TC differ significantly in accumulation and coarse modes (–28 and –24‰, respectively) and indicate a different origin of size-segregated aerosol particles. Almost constant organic carbon isotopic ratio (–31.8‰‰) indicates that OM originates from local vegetation. Organic matter concentrations and the carbon isotopic ratio measurements in the size-segregated aerosol particles allow identifying sources of aerosol particles.
Keywords: carbon isotopes, carbonaceous aerosols, size distribution of aerosol particles, composition, δ13C, source apportionment
PACS: 92.20.Bk, 91.65.Dt, 91.62.La


ANGLIES IZOTOPŲ SANTYKIAI (δ13C) ĮVAIRAUS DYDŽIO ANGLINGOSE AEROZOLIO DALELĖSE FONINĖJE LIETUVOS VIETOVĖJE
A. Garbaras, I. Rimšelytė, K. Kvietkus, V. Remeikis
Fizikos institutas, Vilnius, Lietuva

Pateikti anglies izotopinio santykio įvairaus dydžio aerozolio dalelėse Rūgšteliskio integruoto monitoringo stotyje  2008 liepos 10–24 d. tyrimų duomenys. Nustatyta, kad bendros anglies koncentracija kito nuo 0,06 iki 0,35 µgm-3, o elementinės anglies – nuo 0,02 iki 0,15 µgm-3 aerozolio dalelių akumuliacinėje modoje bei atitinkamai nuo 0,06 iki 0,14 µgm-3 ir nuo 0,02 iki 0,06 µgm-3 stambiųjų aerozolio dalelių modoje. Tuo pačiu metu išmatuota organinių medžiagų koncentracija aerozolio dalelėse buvo 1,0–25,4 µgm-3, o vidutinė vertė – 5,6 µgm-3. Taikant HYSPLIT modelį oro masių pernašos atgalinių trajektorijų skaičiavimui, nagrinėta aerozolių dalelių, atneštų oro masėmis į nutolusią nuo antrpogeninės taršos šaltinių vietovę, kilmė, siejant ją su išmatuotomis anglies izotopinių santykių vertėmis. Bendrosios anglies izotopiniai santykiai akumuliacinėje ir stambiųjų aerozolio dalelių modose žymiai skiriasi (–28 ‰ ir –24 ‰, atitinkamai). Tai rodo, jog įvairaus dydžio aerozolio dalelės yra skirtingos kilmės. Beveik pastovi organinės anglies izotopinio santykio vertė (–31,8 ‰) rodo, jog aerozolio dalelėse esantys organiniai junginiai emituoti vietinės augmenijos. Naudojant organinių junginių koncentracijos matavimus aerozolių masių spektrometrija ir stabilios anglies izotopų santykius įvairaus dydžio aerozolio dalelėse, atsiranda galimybė identifikuoti aerozolio dalelių kilmę ir vietinius bei globalius jų šaltinius.


References / Nuorodos


[1] D. Čeburnis, J. Ovadnevaitė, K. Kvietkus, V. Remeikis, and V. Ulevičius, Aerosols, organics matter and impact on climate, Lithuanian J. Phys. 45, 323–332 (2005),
http://dx.doi.org/10.3952/lithjphys.45510
[2] C.P. Chio and C.M. Liao, Assessment of atmospheric ultrafine carbon particle-induced human health risk based on surface area dosimetry, Atmos. Environ. 42, 8575–8584 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.027
[3] C. Alves, C. Pio, A. Carvalho, and C. Santos, Atmospheric carbonaceous aerosols over grasslands of central Europe and a Boreal forest, Chemosphere 63, 53–164 (2006),
http://dx.doi.org/10.1016/j.chemosphere.2005.07.004
[4] D. Widory, S. Roy, Y. Moulec, G. Goupil, A. Cochere, and C. Guerrot, The origin of atmospheric particles in Paris: Aviewthrough carbon and lead isotopes, Atmos. Environ. 38, 953–961 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.11.001
[5] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N. Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments of Lithuanian lakes, Nukleonika 50(2), 61–66 (2005),
http://www.nukleonika.pl/www/back/full/vol50_2005/v50n2p061f.pdf
[6] H. Cachier, P. Buat-Menard, M. Fontugne, and R. Chesselet, Long-range transport of continentally derived particulate carbon to the marine atmosphere: Evidence from stable carbon isotope studies, Tellus 38B, 161–177 (1986),
http://dx.doi.org/10.1111/j.1600-0889.1986.tb00184.x
[7] A.L. Norman, J.F. Hopper, P. Blanchard, D. Ernst, K. Brice, N. Alexandrou, and G. Klouda, The stable carbon isotope composition of atmospheric PAHs, Atmos. Environ. 33, 2807–2814 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00358-6
[8] S.D. Kelly, C. Stein, and T.D. Jickells, Carbon and nitrogen isotopic analysis of atmospheric organic matter, Atmos. Environ. 39, 6007–6011 (2005),
http://dx.doi.org/10.1016/j.atmosenv.2005.05.030
[9] L.A. Martinelli, P.B. Camargo, L.B.L.S. Lara, R.L.Victoria, and P. Artaxo, Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil, Atmos. Environ. 36, 2427–2432 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00454-X
[10] J.J. Cao, S.C. Lee, K.F. Ho, S.C. Zou, K. Fung, Y. Li, J.G.Watson, and J.C. Chow, Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China, Atmos. Environ. 38, 4447–4456 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.05.016
[11] A. Milukaitė, K. Kvietkus, and I. Rimšelytė, Organic and elemental carbon in coastal aerosol of the Baltic Sea, Lithuanian J. Phys. 47, 203–210 (2007),
http://dx.doi.org/10.3952/lithjphys.47205
[12] J.C. Chow, J.G. Watson, D.H. Lowenthal, and K.L. Magliano, Size-resolved aerosol chemical concentrations at rural and urban sites in Central California, USA, Atmos. Res. 90, 243–252 (2008),
http://dx.doi.org/10.1016/j.atmosres.2008.03.017
[13] HYSPLIT4 (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory (Silver Spring, MD., 1997),
http://www.arl.noaa.gov/ready/open/hysplit4.html
[14] A. Garbaras, J. Andriejauskienė, R. Barisevičiūtė, and V. Remeikis, Tracing of atmospheric aerosol sources using stable carbon isotopes, Lithuanian J. Phys. 48, 259–264 (2008),
http://dx.doi.org/10.3952/lithjphys.48309
[15] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and E. Pesliakaitė, Chemical composition and size distribution of fine aerosol particles on the east coast of the Baltic Sea, Lithuanian J. Phys. 47, 523–529 (2007),
http://dx.doi.org/10.3952/lithjphys.47425
[16] F.W. McLafferty and F. Turecek, Interpretation of Mass Spectra, 3nd ed. (University Science Books, Mill Valley, CA., 1993),
http://www.amazon.co.uk/Interpretation-Mass-Spectra-Fred-McLafferty/dp/0935702253/
[17] M.R. Alfarra, A.S.H. Prevot, S. Szidat, J. Sandradewi, S. Weimer, V.A. Lanz, D. Schreiber, M. Mohr, and U. Baltensperger, Identification of the mass spectral signature of organic aerosols from wood burning emissions, Environ. Sci. Technol. 41, 5770–5777 (2007),
http://dx.doi.org/10.1021/es062289b
[18] J.C. Cabada, S. Rees, S. Takahama, A.Y. Khlystov, S.N. Pandis, C.I. Davidson, and A.L. Robinson, Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh Supersite, Atmos. Environ. 38, 3127–3141 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.03.004
[19] R.M.B.O. Duarte, C.L. Mieiro, A. Penetra, C.A. Pio, and A.C. Duarte, Carbonaceous materials in size-segregated atmospheric aerosols from urban and coastal-rural areas at the Western European Coast, Atmos. Res. 90, 253–263 (2008),
http://dx.doi.org/10.1016/j.atmosres.2008.03.003
[20] T. Gnauk, K. Müller, D. Pinxteren, L.Y. He, Y. Niu, M. Hu, and H. Herrmann, Size-segregated particulate chemical composition in Xinken, Pearl River Delta, China: OC=EC and organic compounds, Atmos. Environ. 42, 6296–6309 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.05.001
[21] R. Fisseha, M. Saurer, M. Jäggi, R.T.W. Siegwolf, J. Dommen, S. Szidat, V. Samburova, and U. Baltensperger, Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes, Atmos. Environ. 43, 431–437 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.041