[PDF]
http://dx.doi.org/10.3952/lithjphys.49205
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 209–214 (2009)
TEMPERATURE BEHAVIOUR OF OPTICAL
ABSORPTION EDGE AND PHASE TRANSITIONS IN Cu6PS5I0.8Cl0.2
SUPERIONIC MIXED CRYSTALS
I.P. Studenyaka, V.Yu. Izaia, V.V. Pankob,
A.F. Orliukasb, E. Kazakevičiusb, F. Kolelic,
M. Dudukcuc, and R. Aydinc
aUzhhorod National University, 46 Pidhirna St, 88000
Uzhhorod, Ukraine
E-mail: studenyak@dr.com
bFaculty of Physics, Vilnius University,
Saulėtekio 9, LT-10222 Vilnius, Lithuania
cMersin University, Ciftlik-koy, 33342 Mersin,
Turkey
Received 28 January 2009; revised
16 March 2009; accepted 19 March 2009
Isoabsorption and spectral
temperature studies of absorption edge of Cu6PS5I0.8Cl0.2
superionic mixed crystals are performed. Phase transition
temperatures are determined and the transitions are identified.
The optical absorption edge shape is studied in the temperature
range 77–320 K, the parameters of electron-phonon interaction,
resulting in the Urbach behaviour of the optical absorption edge,
are determined, temperature dependences of the optical pseudogap
and Urbach energy are obtained.
Keywords: superionic mixed crystals,
optical absorption edge, Urbach rule, phase transitions
PACS: 78.40.Ha, 77.80.Bh
OPTINIO SUGERTIES KRAŠTO
TEMPERATŪRINIS ELGESYS IR FAZINIAI VIRSMAI Cu6PS5I0,8Cl0,2
SUPERJONINIAME LAIDININKE
I.P. Studenyaka, V.Yu. Izaia, V.V. Pankob,
A.F. Orliukasb, E. Kazakevičiusb, F. Kolelic,
M. Dudukcuc, R. Aydinc
aUžhorodo nacionalinis universitetas, Užhorodas,
Ukraina
bVilniaus universiteto Fizikos fakultetas,
Vilnius, Lietuva
cMersino universitetas, Mersinas, Turkija
Atlikti maišyto Cu6PS5I0,8Cl0,2
kristalo izosugerties ir sugerties krašto spektriniai bei
temperatūriniai tyrimai, identifikuoti faziniai virsmai ir
įvertintos jų temperatūros. Optinės sugerties krašto forma buvo
tiriama 77–300 K temperatūroje, nustatyti optinės sugerties krašto
Urbacho elgesį lemiančios elektrono ir fonono sąveikos parametrai
bei optinio pseudotarpo ir Urbacho energijos temperatūrinės
priklausomybės.
References / Nuorodos
[1] W.F. Kuhs, R. Nitsche, and K. Scheunemann, Vapour growth and
lattice data of new compounds with icosahedral structure of the type
Cu6PS5Hal (Hal = Cl, Br, I), Mater. Res. Bull.
11, 1115–1124 (1976),
http://dx.doi.org/10.1016/0025-5408(76)90010-6
[2] V.V. Panko, I.P. Studenyak, V.S. Dyordyai, Gy.S. Kovacs, A.N.
Borets, and Yu.V. Voroshilov, Influence of preparation conditions on
properties of Cu6PS5Hal crystals, Izv. Akad.
Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR)] 24, 120–123
(1988) [in Russian]
[3] R.B. Beeken, J.J. Garbe, and N.R. Petersen, Cation mobility in
the Cu6PS5X (X = Cl, Br, I) argyrodites, J.
Phys. Chem. Solids 64, 1261–1264 (2003),
http://dx.doi.org/10.1016/S0022-3697(03)00086-6
[4] I.P. Studenyak, R. Vaitkus, V.S. Dyordyai, A. Kezionis, V.
Mikucionis, V.V. Panko, Gy.S. Kovacs, V.A. Stefanovich, A.F.
Orliukas, A.N. Borets, and V.Yu. Slivka, Phase transitions in Cu6PS5I
single crystals, Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid
State] 28, 2555–2557 (1986) [in Russian]
[5] I.P. Studenyak, V.O. Stefanovich, M. Kranjčec, D.I. Desnica,
Yu.M. Azhniuk, Gy.Sh. Kovacs, and V.V. Panko, Raman scattering
studies of Cu6PS5Hal (Hal = Cl, Br, and I)
fast-ion conductors, Solid State Ionics 95, 221–225 (1997),
http://dx.doi.org/10.1016/S0167-2738(96)00477-8
[6] A. Gagor, A. Pietraszko, and D. Kaynts, Diffusion paths
formation for Cu+ ions in superionic Cu6PS5I
single crystals studied in terms of structural phase transition, J.
Solid State Chem. 178, 3366–3375 (2005),
http://dx.doi.org/10.1016/j.jssc.2005.08.015
[7] S. Fiechter and E. Gmelin, Thermochemical data of
argyrodite-type ionic conductors: Cu6PS5Hal
(Hal = Cl, Br, I), Thermochim. Acta 85, 155–158 (1985),
http://dx.doi.org/10.1016/0040-6031(85)85553-2
[8] I.P. Studenyak, Gy.S. Kovacs, A.F. Orliukas, and E.T. Kovacs,
Temperature variations of dielectric and optical properties in phase
transitions regions for Cu6PS(Se)5Hal
superionic ferroelastics, Izv. Ross. Akad. Nauk, Ser. Fiz. [Bull.
Russ. Acad. Sci., Phys. Ser.] 56, 86–93 (1992) [in Russian]
[9] V. Samulionis, V. Valevičius, I.P. Studeniak, and D.S. Kovač,
Acoustic properties of superionic ferroelastic Cu6PS5I
and Cu6PS5Br crystals, Ultragarsas
(Ultrasonics) 25, 129–136 (1993)
[10] V. Samulionis, J. Banys, Y. Vysochanskii, and I. Studenyak,
Investigation of ultrasonic and acoustoelectric properties of
ferroelectric-semiconductor crystals, Ferroelectrics 336,
29–38 (2006),
http://dx.doi.org/10.1080/00150190600695255
[11] I.P. Studenyak, Gy.S. Kovacs, V.V. Panko, E.T. Kovacs, and A.N.
Borets, Absorption edge and phase transitions in Cu6PS5Hal
(Hal = Br, I) superionic crystals, Fiz. Tverd. Tela (Leningrad)
[Sov. Phys. Solid State] 26, 2598–2602 (1984) [in Russian]
[12] I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs, V.V. Panko, D.I.
Desnica, A.G. Slivka, and P.P. Guranich, The effect of temperature
and pressure on the optical absorption edge in Cu6PS5X
(X = Cl, Br, I) crystals, J. Phys. Chem. Solids 60,
1897–1904 (1999),
http://dx.doi.org/10.1016/S0022-3697(99)00220-6
[13] F. Urbach, The long-wavelength edge of photographic sensitivity
and electronic absorption of solids, Phys. Rev. 92,
1324–1326 (1953),
http://dx.doi.org/10.1103/PhysRev.92.1324
[14] I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs, I.D. Desnica, V.V.
Panko, and V.Yu. Slivka, Influence of compositional disorder on
optical absorption processes in Cu6P(S1–xSex)5I
crystals, J. Mater. Res. 16, 1600–1608 (2001),
http://dx.doi.org/10.1557/JMR.2001.0222
[15] F. Oswald, Zur Meßgenauigkeit bei der Bestimmung der
Absorptionskonstanten von Halbleitern im infraroten Spektralbereich,
Optik 16, 527–537 (1959)
[16] M.V. Kurik, Urbach rule, Phys. Status Solidi A 8, 9–45
(1971),
http://dx.doi.org/10.1002/pssa.2210080102
[17] H. Sumi and A. Sumi, The Urbach–Martiensen rule revisited, J.
Phys. Soc. Jpn. 56, 2211–2220 (1987),
http://dx.doi.org/10.1143/JPSJ.56.2211
[18] M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, and T.
Tiedje, Optical absorption edge of semi-insulating GaAs and InP at
high temperatures, Appl. Phys. Lett. 70, 3540–3542 (1997),
http://dx.doi.org/10.1063/1.119226
[19] Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, and K.J.
Reeson, Optical absorption study of ion beam synthesized
polycrystalline semiconducting FeSi2, J. Appl. Phys. 78,
1958–1963 (1995),
http://dx.doi.org/10.1063/1.360167
[20] G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein,
Disorder and the optical-absorption edge of hydrogenated amorphus
silicon, Phys. Rev. Lett. 47, 1480–1483 (1981),
http://dx.doi.org/10.1103/PhysRevLett.47.1480
[21] G.D. Cody, Urbach edge of crystalline and amorphous silicon: A
personal review, J. Non-Cryst. Solids 141, 3–15 (1992),
http://dx.doi.org/10.1016/S0022-3093(05)80513-7
[22] A. Skumanich, A. Frova, and N.M. Amer, Urbach tail and gap
states in hydrogenated a-SiC and a-SiGe alloys, Solid State Commun.
54, 597–601 (1985),
http://dx.doi.org/10.1016/0038-1098(85)90086-9