[PDF]    http://dx.doi.org/10.3952/lithjphys.49205

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 209–214 (2009)


TEMPERATURE BEHAVIOUR OF OPTICAL ABSORPTION EDGE AND PHASE TRANSITIONS IN Cu6PS5I0.8Cl0.2 SUPERIONIC MIXED CRYSTALS
I.P. Studenyaka, V.Yu. Izaia, V.V. Pankob, A.F. Orliukasb, E. Kazakevičiusb, F. Kolelic, M. Dudukcuc, and R. Aydinc
aUzhhorod National University, 46 Pidhirna St, 88000 Uzhhorod, Ukraine
E-mail: studenyak@dr.com
bFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
cMersin University, Ciftlik-koy, 33342 Mersin, Turkey

Received 28 January 2009; revised 16 March 2009; accepted 19 March 2009

Isoabsorption and spectral temperature studies of absorption edge of Cu6PS5I0.8Cl0.2 superionic mixed crystals are performed. Phase transition temperatures are determined and the transitions are identified. The optical absorption edge shape is studied in the temperature range 77–320 K, the parameters of electron-phonon interaction, resulting in the Urbach behaviour of the optical absorption edge, are determined, temperature dependences of the optical pseudogap and Urbach energy are obtained.
Keywords: superionic mixed crystals, optical absorption edge, Urbach rule, phase transitions
PACS: 78.40.Ha, 77.80.Bh


OPTINIO SUGERTIES KRAŠTO TEMPERATŪRINIS ELGESYS IR FAZINIAI VIRSMAI Cu6PS5I0,8Cl0,2 SUPERJONINIAME LAIDININKE

I.P. Studenyaka, V.Yu. Izaia, V.V. Pankob, A.F. Orliukasb, E. Kazakevičiusb, F. Kolelic, M. Dudukcuc, R. Aydinc
aUžhorodo nacionalinis universitetas, Užhorodas, Ukraina
bVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
cMersino universitetas, Mersinas, Turkija

Atlikti maišyto Cu6PS5I0,8Cl0,2 kristalo izosugerties ir sugerties krašto spektriniai bei temperatūriniai tyrimai, identifikuoti faziniai virsmai ir įvertintos jų temperatūros. Optinės sugerties krašto forma buvo tiriama 77–300 K temperatūroje, nustatyti optinės sugerties krašto Urbacho elgesį lemiančios elektrono ir fonono sąveikos parametrai bei optinio pseudotarpo ir Urbacho energijos temperatūrinės priklausomybės.


References / Nuorodos


[1] W.F. Kuhs, R. Nitsche, and K. Scheunemann, Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I), Mater. Res. Bull. 11, 1115–1124 (1976),
http://dx.doi.org/10.1016/0025-5408(76)90010-6
[2] V.V. Panko, I.P. Studenyak, V.S. Dyordyai, Gy.S. Kovacs, A.N. Borets, and Yu.V. Voroshilov, Influence of preparation conditions on properties of Cu6PS5Hal crystals, Izv. Akad. Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR)] 24, 120–123 (1988) [in Russian]
[3] R.B. Beeken, J.J. Garbe, and N.R. Petersen, Cation mobility in the Cu6PS5X (X = Cl, Br, I) argyrodites, J. Phys. Chem. Solids 64, 1261–1264 (2003),
http://dx.doi.org/10.1016/S0022-3697(03)00086-6
[4] I.P. Studenyak, R. Vaitkus, V.S. Dyordyai, A. Kezionis, V. Mikucionis, V.V. Panko, Gy.S. Kovacs, V.A. Stefanovich, A.F. Orliukas, A.N. Borets, and V.Yu. Slivka, Phase transitions in Cu6PS5I single crystals, Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid State] 28, 2555–2557 (1986) [in Russian]
[5] I.P. Studenyak, V.O. Stefanovich, M. Kranjčec, D.I. Desnica, Yu.M. Azhniuk, Gy.Sh. Kovacs, and V.V. Panko, Raman scattering studies of Cu6PS5Hal (Hal = Cl, Br, and I) fast-ion conductors, Solid State Ionics 95, 221–225 (1997),
http://dx.doi.org/10.1016/S0167-2738(96)00477-8
[6] A. Gagor, A. Pietraszko, and D. Kaynts, Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition, J. Solid State Chem. 178, 3366–3375 (2005),
http://dx.doi.org/10.1016/j.jssc.2005.08.015
[7] S. Fiechter and E. Gmelin, Thermochemical data of argyrodite-type ionic conductors: Cu6PS5Hal (Hal = Cl, Br, I), Thermochim. Acta 85, 155–158 (1985),
http://dx.doi.org/10.1016/0040-6031(85)85553-2
[8] I.P. Studenyak, Gy.S. Kovacs, A.F. Orliukas, and E.T. Kovacs, Temperature variations of dielectric and optical properties in phase transitions regions for Cu6PS(Se)5Hal superionic ferroelastics, Izv. Ross. Akad. Nauk, Ser. Fiz. [Bull. Russ. Acad. Sci., Phys. Ser.] 56, 86–93 (1992) [in Russian]
[9] V. Samulionis, V. Valevičius, I.P. Studeniak, and D.S. Kovač, Acoustic properties of superionic ferroelastic Cu6PS5I and Cu6PS5Br crystals, Ultragarsas (Ultrasonics) 25, 129–136 (1993)
[10] V. Samulionis, J. Banys, Y. Vysochanskii, and I. Studenyak, Investigation of ultrasonic and acoustoelectric properties of ferroelectric-semiconductor crystals, Ferroelectrics 336, 29–38 (2006),
http://dx.doi.org/10.1080/00150190600695255
[11] I.P. Studenyak, Gy.S. Kovacs, V.V. Panko, E.T. Kovacs, and A.N. Borets, Absorption edge and phase transitions in Cu6PS5Hal (Hal = Br, I) superionic crystals, Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid State] 26, 2598–2602 (1984) [in Russian]
[12] I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs, V.V. Panko, D.I. Desnica, A.G. Slivka, and P.P. Guranich, The effect of temperature and pressure on the optical absorption edge in Cu6PS5X (X = Cl, Br, I) crystals, J. Phys. Chem. Solids 60, 1897–1904 (1999),
http://dx.doi.org/10.1016/S0022-3697(99)00220-6
[13] F. Urbach, The long-wavelength edge of photographic sensitivity and electronic absorption of solids, Phys. Rev. 92, 1324–1326 (1953),
http://dx.doi.org/10.1103/PhysRev.92.1324
[14] I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs, I.D. Desnica, V.V. Panko, and V.Yu. Slivka, Influence of compositional disorder on optical absorption processes in Cu6P(S1–xSex)5I crystals, J. Mater. Res. 16, 1600–1608 (2001),
http://dx.doi.org/10.1557/JMR.2001.0222
[15] F. Oswald, Zur Meßgenauigkeit bei der Bestimmung der Absorptionskonstanten von Halbleitern im infraroten Spektralbereich, Optik 16, 527–537 (1959)
[16] M.V. Kurik, Urbach rule, Phys. Status Solidi A 8, 9–45 (1971),
http://dx.doi.org/10.1002/pssa.2210080102
[17] H. Sumi and A. Sumi, The Urbach–Martiensen rule revisited, J. Phys. Soc. Jpn. 56, 2211–2220 (1987),
http://dx.doi.org/10.1143/JPSJ.56.2211
[18] M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, and T. Tiedje, Optical absorption edge of semi-insulating GaAs and InP at high temperatures, Appl. Phys. Lett. 70, 3540–3542 (1997),
http://dx.doi.org/10.1063/1.119226
[19] Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, and K.J. Reeson, Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2, J. Appl. Phys. 78, 1958–1963 (1995),
http://dx.doi.org/10.1063/1.360167
[20] G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphus silicon, Phys. Rev. Lett. 47, 1480–1483 (1981),
http://dx.doi.org/10.1103/PhysRevLett.47.1480
[21] G.D. Cody, Urbach edge of crystalline and amorphous silicon: A personal review, J. Non-Cryst. Solids 141, 3–15 (1992),
http://dx.doi.org/10.1016/S0022-3093(05)80513-7
[22] A. Skumanich, A. Frova, and N.M. Amer, Urbach tail and gap states in hydrogenated a-SiC and a-SiGe alloys, Solid State Commun. 54, 597–601 (1985),
http://dx.doi.org/10.1016/0038-1098(85)90086-9