[PDF]
http://dx.doi.org/10.3952/lithjphys.49206
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 215–220 (2009)
CHEMICAL ETCHING OF ISOLATION
GROOVES IN HIGH-POWER SILICON DEVICES
D. Šaluchaa,b and I. Šimkienėa
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: irena@pfi.lt
bJoint Stock Company “Vilniaus Ventos
Puslaidininkiai”, Ateities 10, LT-08303 Vilnius, Lithuania
Received 2 February 2009; revised
29 April 2009; accepted 18 June 2009
The procedure of wet chemical
etching, which plays an important role in the fabrication of
high-power Si devices in standard commercial equipment, is
discussed. The characteristics of isolation grooves in Si
high-voltage thyristors and diodes have been investigated, with
respect to etchants and wet etching conditions. It has been found
that the standard deviation in the depth values of isolation
grooves produced in the Si wafer of 125 mm in diameter is reduced
to 0.85 μm using a proposed modied technological
procedure.
Keywords: wet chemical etching, silicon
high-power devices
PACS: 61.82.Fk, 81.65.-b, 85.30.Rs
DIDELĖS GALIOS SILICIO PRIETAISŲ
IZOLIAVIMO GRIOVELIŲ CHEMINIS ĖSDINIMAS
D. Šaluchaa,b, I. Šimkienėa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bAkcinė bendrovė „Vilniaus Ventos
puslaidininkiai“, Vilnius, Lietuva
Nagrinėjamas izoliacinio griovelio gylių verčių
kitimo intervalo ir jų standartinio nuokrypio mažinimo metodas
didelės galios silicio prietaisuose. Nustatyta, kad gilėjant
izoliaciniams grioveliams kartu auga standartinis nuokrypis.
Izoliacinio griovelio gylių verčių standartinis nuokrypis
sumažintas nuo 1,74 iki 0,85 μm, didinant ėsdinimo kasetės
sukimosi greitį ėsdiklyje nuo 30 iki 52 aps/min. Nustatyta, kad
kartu pakito ir ėsdinimo greitis nuo 13,6 iki 18,6 μm/min.
Ištirta ėsdinimo kasetės sukimosi greičio įtaka izoliacinio
griovelio dugno formai ir morfologijai.
References / Nuorodos
[1] M. Steinert, J. Acker, M. Krause, S. Oswald, and K. Wetzig,
Reactive species generated during wet chemical etching of silicon in
HF/HNO3 mixtures, J. Phys. Chem. B 110,
11377–11382 (2006),
http://dx.doi.org/10.1021/jp0608168
[2] A. Henßge, J. Acker, and C. Müller, Titrimetric determination of
silicon dissolved in concentrated HF–HNO3-etching
solutions, Talanta 68, 581–585 (2006),
http://dx.doi.org/10.1016/j.talanta.2005.04.049
[3] J. Acker and A. Henßge, Chemical analysis of acidic silicon etch
solutions: II. Determination of HNO3, HF, and H2SiF6
by ion chromatography, Talanta 72, 1540–1545 (2007),
http://dx.doi.org/10.1016/j.talanta.2007.02.005
[4] A. Oltersdorf, M. Zimmer, M. Seitz, and J. Rentsch, Analytical
research of the acid etching bath by ion chromatography, in: Proceedings
of the 23rd European Photovoltaic Solar Energy Conference and
Exhibition, 1–5 September, Valencia, Spain (2008),
http://www.ise.fraunhofer.de/
[5] M. Steinert, J. Acker, A. Henßge, and K. Wetzig, Experimental
studies on the mechanism of wet chemical etching of silicon in HF
/HNO3 mixtures, J. Electrochem. Soc. 152,
C843–C850 (2005),
http://dx.doi.org/10.1149/1.2116727
[6] J. Weber, S. Knack, O.V. Feklisova, N.A. Yarkin, and E.B.
Yakimov, Hydrogen penetration into silicon during wet-chemical
etching, Microelectron. Eng. 66, 320–326 (2003),
http://dx.doi.org/10.1016/S0167-9317(02)00926-7
[7] K. Yamamura and T. Mitani, Etching characteristics of local wet
etching of silicon in HF/HNO3 mixtures, Surf. Interf.
Anal. 40, 1011–1013 (2008),
http://dx.doi.org/10.1002/sia.2838
[8] M. Steinert, J. Acker, S. Oswald, and K. Wetzig, Study on
mechanism of silicon etching in HNO3-rich HF /HNO3
mixtures, J. Phys. Chem. C 111, 2133–2140 (2007),
http://dx.doi.org/10.1021/jp066348j
[9] D. Šalucha, I. Šimkiene, and J. Sabaityte, Formation of
nanostructured layers for passivation of high power silicon devices,
Acta Phys. Pol. A 113, 1079–1083 (2008),
http://przyrbwn.icm.edu.pl/APP/ABSTR/113/a113-3-67.html
[10] M. Ramonda, Ph. Dumas, and F. Salvan, On the rougness of
perfectly flat H–Si(111) surfaces an atomic force microscopy
approach, Surf. Sci. 411, L839–L843 (1998),
http://dx.doi.org/10.1016/S0039-6028(98)00406-3
[11] V. Lehmann, The chemical dissolution of silicon, in: The
Electrochemistry of Silicon: Instrumentation, Science, Materials
and Applications (Wiley-VCH, Weinheim, Germany, 2002) p. 23,
http://dx.doi.org/10.1002/3527600272.ch2
[12] M.J. Madou, Fundamentals of Microfabrication, 2nd ed.
(CRC Press, Boca Raton, FL, 2002) p. 209,
https://www.crcpress.com/From-MEMS-to-Bio-MEMS-and-Bio-NEMS-Manufacturing-Techniques-and-Applications/Madou/9781420055160
[13] E.S. Kooij, K. Butter, and J.J. Kelly, Silicon etching in
HF/HNO3 solution: Charge balance for the oxidation
reaction, Electrochem. Solid-State Lett. 2, 178–180 (1999),
http://dx.doi.org/10.1149/1.1390775