[PDF]
http://dx.doi.org/10.3952/lithjphys.49207
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 197–202 (2009)
XPS STUDY OF V1.67Ti0.33O5±δ⋅nH2O
XEROGELS INTERCALATED WITH HYDROQUINONE
V. Bondarenkaa,b, H. Tvardauskasa, S.
Grebinskija, M. Senulisa, A. Pašiškevičiusa,
V. Volkovc, and G. Zakharovac
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bVilnius Pedagogical University, Studentų 39,
LT-08106, Vilnius, Lithuania
cInstitute of Solid State Chemistry, Pervomayskaya
91, 620219 Yekaterinburg, Russian Federation
Received 15 January 2009; revised 3
February 2009; accepted 18 June 2009
Layered nanocomposites of V1.67Ti0.33O5±δ⋅nH2O
gels are synthesized by using sol-gel technology. Then an aqueous
solution of hydroquinone (HQ) was mixed with the formed gel in
molar ratio 0.33 : 1 and 0.17 : 1 respectively. In this way the V1.67Ti0.33O5±δ⋅nH2O/2HQ
and V1.67Ti0.33O5±δ⋅nH2O/HQ
gels were synthesized. The valences of vanadium and titanium ions
in the investigated compounds are studied by means of X-ray
photoelectron spectroscopy (XPS) before and after etching the
samples with Ar+ ions for 15 min (3 keV, current
density 10 μAcm–2). XPS analysis results show
that independent of the hydroquinone intercalation degree (one or
two hydroquinone) and Ar+ ion etching the ions of
titanium are in stable 4+ states. Vanadium ions in all cases (one
or two hydroquinone, before and after etching) are in V3+,
V4+, and V5+ states. The increase in
quantity of hydroquinone in the samples leads to higher
concentration of V3+ and V4+ ions. The
concentrations of lower valence vanadium ions increase after Ar+
ion etching of the samples.
Keywords: vanadium hydrates, sol-gel
technology, hydroquinone, XPS
PACS: 79.60.-i, 81.20.Fw, 82.70.Gg
V1,67Ti0,33O5±δ⋅nH2O
KSEROGELIŲ, INTERKALIUOTŲ HIDROCHINONU, RENTGENO
FOTOELEKTRONINIŲ SPEKTRŲ TYRIMAS
V. Bondarenkaa,b, H. Tvardauskasa, S.
Grebinskija, M. Senulisa, A. Pašiškevičiusa,
V. Volkovc, G. Zakharovac
aPuslaidininkių fizikos institutas, Vilnius,
Lietuva
bVilniaus pedagoginis universitetas, Vilnius,
Lietuva
cKietojo kūno chemijos institutas,
Jekaterinburgas, Rusija
Pateikti V1,67Ti0,33O5±δ⋅nH2O/2HQ
ir V1,67Ti0,33O4,85⋅nH2O/HQ
(HQ – hidrochinonas) gelių, gautų naudojant zolio ir gelio
technologiją, Rentgeno fotoelektronų spektrai. Tyrinėtuose
junginiuose vanadžio ir titano jonų valentingumas analizuotas
remiantis Rentgeno fotoelektronų spektroskopija (RFS) prieš ir po
bandinių ėsdinimo Ar+ jonais, trukusį 15 min (3 keV,
srovės tankis 10 μAcm–2). RFS analizės
rezultatai parodė, jog, nepriklausomai nuo hidrochinono
interkaliavimo laipsnio (vienas ar du HQ) ir ėsdinimo Ar+
jonais, titano jonai yra stabiliose 4+ būsenose. Vanadžio jonai
visais atvejais (vienas ar du HQ, prieš ir po ėsdinimo) yra V3+,
V4+ ir V5+ būsenose. V3+ ir V4+
santykinė koncentracija didėja, didėjant HQ kiekiui geliuose bei
po bandinių ėsdinimo Ar+ jonais.
References / Nuorodos
[1] J.-J. Legendre and J. Livage, Vanadium pentoxide gels: I.
Structural study by electron diffraction, J. Colloid. Interf. Sci. 94(1),
75–83 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90236-9
[2] J.-J. Legendre, P. Aldebert, N. Bafer, and J. Livage, Vanadium
pentoxide gels: II. Structural study by X-ray diffraction, J.
Colloid Interf. Sci. 94(1), 84–89 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90237-0
[3] V. Volkov, G. Zakharova, and V. Bondarenka, Xerogels of
Simple and Complex Polyvanadates (Nauka, Yekaterinburg, 2001)
[in Russian]
[4] V. Bondarenka, A. Pašiškevičius, V.L. Volkov, and G.S.
Zakharova, Synthesis and X-ray study of ammonium polyvanadomolybdate
xerogels, Lithuanian J. Phys. 47(1), 59–62 (2007),
http://dx.doi.org/10.3952/lithjphys.47102
[5] F. Huguenin, E.M. Girotto, R.M. Torresi, and D.A. Buttry,
Transport properties of V2O5 / polypyrrole
nanocomposite prepared by a sol-gel alkoxide route, J. Electroanal.
Chem. 536(1–2), 37–45 (2002),
http://dx.doi.org/10.1016/S0022-0728(02)01188-9
[6] T. Nakato, T. Ise, Y. Sugahara, K. Kuroda, and Ch. Kato,
Preparation of intercalation compounds between V2O5
gel and bipyridyl metal complexes, Mater. Res. Bull. 26(4),
309–315 (1991),
http://dx.doi.org/10.1016/0025-5408(91)90026-I
[7] P. Aldebert, N. Bafer, N. Gharbi, and J. Livage, Intercalation
de solvants organiques polaires dans la structure lamellaire des
gels de V2O5, Mater. Res. Bull. 16(8),
949–955 (1981),
http://dx.doi.org/10.1016/0025-5408(81)90136-7
[8] V.L. Volkov, G.S. Zakharova, M.V. Kuznetsov, A. Jin, Q. Zhu, and
W. Chen, Nanocomposites of V1,67Me0,33O5±δ⋅nH2O
(Me = Mo or Ti) xerogels intercalated with hydroquinone and
poly(vinyl alcohol), Russian J. Inorg. Chem. 51(9),
1339–1344 (2006) [in Russian],
http://dx.doi.org/10.1134/S0036023606090014
[9] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and J. Livage,
Thin layers deposited from V2O5 gels: I. A
conductivity study, J. Non-Cryst. Solids 68(1), 123–134
(1984),
http://dx.doi.org/10.1016/0022-3093(84)90039-5
[10] Practical Surface Analysis: Auger and X-Ray Photoelectron
Spectroscopy, eds. D. Briggs and M.P. Seah (John Wiley &
Sons Ltd., 1996),
http://www.amazon.co.uk/Practical-Surface-Analysis-Photoelectron-Spectroscopy/dp/0471920819/
[11] V. Bondarenka and A. Pašiškevičius, Electrical properties of
hydrated vanadium compounds (Review), Lithuanian J. Phys. 46(3),
283–293 (2006),
http://dx.doi.org/10.3952/lithjphys.46312
[12] V.I. Nefedov, D. Gati, B.F. Dzhurinskii, N.P. Segushin, and
Ya.A. Salyn, Simple and coordination compounds. An X-ray
photoelectron spectroscopic study of certain oxides, Russian J.
Inorg. Chem. 20, 2307–2314 (1975)
[13] J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook
of X-ray Photoelectron Spectroscopy (Physical Electronics,
Eden Praire, Minnesota, USA, 1995),
http://www.amazon.co.uk/Handbook-X-Ray-Photoelectron-Spectroscopy/dp/999130097X/
[14] V. Bondarenka, H. Tvardauskas, S. Grebinskij, S. Mickevičius,
Z. Martūnas, V. Volkov, and G. Zakharova, Ion beam induced
preferential removal of oxygen from vanadium hydrates, Nucl.
Instrum. Methods B, 178(3), 323–326 (2001),
http://dx.doi.org/10.1016/S0168-583X(00)00495-X
[15] V. Bondarenka, S. Grebinskij, S. Mickevičius, S. Kačiulis, L.
Pandolfi, V. Volkov, and G. Zakharova, X-ray photoelectron spectra
of vanadium-titanium hydrated compounds, Lithuanian J. Phys. 43(4),
309–313 (2003)
[16] G. Hopfengärtner, D. Borgmann, I. Rademacher, G. Wedler, E.
Hums, and G.W. Spitznagel, XPS studies of oxidic model catalysts:
Internal standards and oxidation numbers, J. Electron Spectrosc.
Related Phenom. 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[17] V. Bondarenka, S. Grebinskij, S. Mickevičius, H. Tvardauskas,
and S. Kačiulis, Determination of vanadium valence in hydrated
compounds, J. Alloys Compounds 382(1), 239–243 (2004),
http://dx.doi.org/10.1016/j.jallcom.2004.06.005
[18] V. Bondarenka, S. Grebinskij, S. Mickevičius, H. Tvardauskas,
S. Kačiulis, V. Volkov, G. Zakharova, and A. Pašiškevičius, Valence
of vanadium in hydrated compounds, Lithuanian J. Phys. 47(3),
333–342 (2007),
http://dx.doi.org/10.3952/lithjphys.47309