[PDF]
http://dx.doi.org/10.3952/lithjphys.49208
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 183–188 (2009)
COST-EFFECTIVE PERSONAL
RADIATION DOSIMETRY
O. Korostynska, K. Arshak, and J. Harris
Microelectronics and Semiconductor Research Centre, ECE Dept.,
University of Limerick, Limerick, Ireland
E-mail: khalil.arshak@ul.ie
Received 2 September 2008; revised
4 April 2009; accepted 18 June 2009
Deep understanding of physical
properties of the materials under the influence of radiation
exposure is vital for the effective design of dosimeter devices.
Detection of radiation is based on the fact that both the
electrical and the optical properties of the materials undergo
changes upon the exposure to ionizing radiation. It is believed
that radiation causes structural defects (called colour centres or
oxygen vacancies in oxides) leading to change in their density on
the exposure to radiation. Thin film technology is considered as
cost-effective alternative for a broad range of sensors. However,
it is especially attractive for metal oxide films with melting
point below 2000
C,
as a wide range of films with mixed composition can be produced.
The influence of radiation depends on both the dose and the
parameters of the films including their thickness: the degradation
is more severe for the higher dose and the thinner films. This
paper reports on gamma radiation sensing properties of thermally
evaporated NbO
2 thin films. These films were deposited
at different deposition rate and pressure. It was experimentally
confirmed that the manufacturing parameters of the films affected
their gamma radiation sensitivity.
Keywords: gamma radiation, thin film,
NbO2, real-time dose monitoring, electrical and optical
properties
PACS: 61.80.-x, 78.20.-e, 81.15.Ef, 87.53.Bn
EKONOMIŠKA ASMENINĖ
SPINDULIUOTĖS DOZIMETRIJA
O. Korostynska, K. Arshak, J. Harris
Limeriko universitetas, Limerikas, Airija
Norint sukurti efektyvius dozimetrinius
prietaisus, būtina giliai suprasti fizikines medžiagų, patiriančių
spinduliuotės poveikį, savybes. Jonizuojančios spinduliuotės
detekcija remiasi tuo, kad dėl jos įtakos kinta medžiagų
elektrinės ir optinės savybės. Manoma, kad spinduliuotė sukelia
sandaros defektus (vadinamus spalvos centrais arba deguonies
vakansijomis oksiduose), kurių tankis kinta priklausomai nuo
ekspozicijos trukmės.
Laikoma, kad plonųjų sluoksnių technologija yra ekonomiška
alternatyva kuriant pačius įvairiausius jutiklius. Ji ypač
patraukli naudojant metalų oksidų sluoksnius, kurių lydymosi
temperatūra yra žemesnė nei 2000
C,
nes taip galima pagaminti ištisą spektrą mišrios sandaros
sluoksnių. Spinduliuotės įtaka tokiems sluoksniams priklauso ir
nuo dozės, ir nuo sluoksnių parametrų, pavyzdžiui, storio:
pažeidimai didesni, kai dozė didesnė ir sluoksnis plonesnis.
Aptariamos galimybės aptikti gama spinduliuotę, naudojant
termiškai garinamus NbO
2 plonus sluoksnius. Sluoksniai
užgarinti skirtingu padengimo greičiu, esant skirtingam slėgiui.
Eksperimentiškai patvirtinta, kad sluoksnių gamybos parametrai
turi įtakos gama spinduliuotės aptikimo jautriui.
References / Nuorodos
[1] O. Korostynska, K. Arshak, D. Morris, E. Jafer, and A. Arshak,
Wireless real time compact radiation detector based on Bi2O3/Nb2O5
thick film capacitors, Sensors Actuators Phys. 142, 28–33
(2008),
http://dx.doi.org/10.1016/j.sna.2007.04.001
[2] K. Arshak and O. Korostynska, Advanced Materials and
Techniques for Radiation Dosimetry (Artech House, Boston,
2006),
http://www.artechhouse.com/International/Books/Advanced-Materials-and-Techniques-for-Radiation-Do-781.aspx
[3] R.F. Bunshah, Handbook of Deposition Technologies for Films
and Coatings – Science, Technology and Applications (William
Andrew Publishing / Noyes, Park Ridge, 1994),
http://www.amazon.co.uk/Handbook-Deposition-Technologies-Films-Coatings/dp/0815513372/
[4] B.N. Chapman, Glow Discharge Processes: Sputtering and
Plasma Etching (Wiley, New York, 1980),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047107828X.html
[5] R.V. Stuart, Vacuum Technology, Thin Films, and Sputtering:
An Introduction (Academic Press, New York, 1983),
http://store.elsevier.com/product.jsp?isbn=9780323139151
[6] L.I. Maissel and R. Glang, Handbook of Thin Film Technology
(McGraw-Hill Book Company, New York, 1983),
http://www.amazon.co.uk/Handbook-Thin-Film-Technology-Maissel/dp/0070397422
[7] K. Arshak, O. Korostynska, and G. Hickey, Gamma radiation and
ozone sensing properties of In2O3:ZnO:SnO2
thin films, Proc. SPIE 6589, 658916 (2007),
http://dx.doi.org/10.1117/12.721839
[8] S. Burachas, M. Ippolitov, V. Manko, V. Lomonosov, S. Nikulin,
A. Vasiliev, Yu. Savelev, A. Apanasenko, and G. Tamulaitis, Defect
clusters of variable composition as an origin of coloration of oxide
crystals under thermal treatment and irradiation, Radiat. Meas. 42,
561–564 (2007),
http://dx.doi.org/10.1016/j.radmeas.2007.01.074
[9] K. Arshak and O. Korostynska, Effect of gamma radiation onto the
properties of TeO2 thin films, Microelectron. Internat. 19(3),
30–34 (2002),
http://dx.doi.org/10.1108/13565360210445023
[10] K. Arshak and O. Korostynska, Gamma radiation-induced changes
in the electrical and optical properties of tellurium dioxide thin
films, IEEE Sensors J. 3, 717–721 (2003),
http://dx.doi.org/10.1109/JSEN.2003.820327
[11] N.F. Mott and E.A. Davis, Electronic Process in
Non-Crystalline Materials (Clarendon Press, Oxford, UK, 1979),
http://www.amazon.co.uk/Electronic-Processes-Noncrystalline-Materials-Monographs/dp/0198512880/
http://ukcatalogue.oup.com/product/9780199645336.do
[12] M.V. Kurik, Urbach rule, Phys. Status Solidi A 8, 9–45
(1971),
http://dx.doi.org/10.1002/pssa.2210080102
[13] E. Colby, G. Lum, T. Plettner, and J. Spencer, Gamma radiation
studies on optical materials, IEEE Trans. Nucl. Sci. 49,
2857–2867 (2002),
http://dx.doi.org/10.1109/TNS.2002.806019
[14] K. Arshak and O. Korostynska, Thick film oxide diode structures
for personal dosimetry application, Sensors Actuators Phys. 113,
319–323 (2004),
http://dx.doi.org/10.1016/j.sna.2004.01.050
[15] K.I. Arshak, J. Molloy, O. Korostynska, and J. Harris, MnO/TeO2
thin films as optical gamma radiation sensors, in: Sensors, 2004,
vol. 3, Proc. IEEE (2004), pp. 1285–1288,
http://dx.doi.org/10.1109/ICSENS.2004.1426416
[16] K. Arshak and O. Korostynska, Influence of gamma radiation on
the electrical properties of MnO and MnO/TeO2 thin films,
Ann. Phys. 13, 87–89 (2004),
http://dx.doi.org/10.1002/andp.200310059
[17] K. Arshak and O. Korostynska, Thin- and thick-film real-time
gamma radiation detectors, IEEE Sensors J. 5, 574–580
(2005),
http://dx.doi.org/10.1109/JSEN.2005.850992
[18] K. Arshak and O. Korostynska, Gamma radiation sensors arrays
based on metal oxide thick films, Sensor Rev. 26, 70–75
(2006),
http://dx.doi.org/10.1108/02602280610640715