[PDF]    http://dx.doi.org/10.3952/lithjphys.49208

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 183–188 (2009)


COST-EFFECTIVE PERSONAL RADIATION DOSIMETRY
O. Korostynska, K. Arshak, and J. Harris
Microelectronics and Semiconductor Research Centre, ECE Dept., University of Limerick, Limerick, Ireland
E-mail: khalil.arshak@ul.ie

Received 2 September 2008; revised 4 April 2009; accepted 18 June 2009

Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects (called colour centres or oxygen vacancies in oxides) leading to change in their density on the exposure to radiation. Thin film technology is considered as cost-effective alternative for a broad range of sensors. However, it is especially attractive for metal oxide films with melting point below 2000 \circC, as a wide range of films with mixed composition can be produced. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper reports on gamma radiation sensing properties of thermally evaporated NbO2 thin films. These films were deposited at different deposition rate and pressure. It was experimentally confirmed that the manufacturing parameters of the films affected their gamma radiation sensitivity.
Keywords: gamma radiation, thin film, NbO2, real-time dose monitoring, electrical and optical properties
PACS: 61.80.-x, 78.20.-e, 81.15.Ef, 87.53.Bn


EKONOMIŠKA ASMENINĖ SPINDULIUOTĖS DOZIMETRIJA
O. Korostynska, K. Arshak, J. Harris
Limeriko universitetas, Limerikas, Airija

Norint sukurti efektyvius dozimetrinius prietaisus, būtina giliai suprasti fizikines medžiagų, patiriančių spinduliuotės poveikį, savybes. Jonizuojančios spinduliuotės detekcija remiasi tuo, kad dėl jos įtakos kinta medžiagų elektrinės ir optinės savybės. Manoma, kad spinduliuotė sukelia sandaros defektus (vadinamus spalvos centrais arba deguonies vakansijomis oksiduose), kurių tankis kinta priklausomai nuo ekspozicijos trukmės.
Laikoma, kad plonųjų sluoksnių technologija yra ekonomiška alternatyva kuriant pačius įvairiausius jutiklius. Ji ypač patraukli naudojant metalų oksidų sluoksnius, kurių lydymosi temperatūra yra žemesnė nei 2000 \circC, nes taip galima pagaminti ištisą spektrą mišrios sandaros sluoksnių. Spinduliuotės įtaka tokiems sluoksniams priklauso ir nuo dozės, ir nuo sluoksnių parametrų, pavyzdžiui, storio: pažeidimai didesni, kai dozė didesnė ir sluoksnis plonesnis.
Aptariamos galimybės aptikti gama spinduliuotę, naudojant termiškai garinamus NbO2 plonus sluoksnius. Sluoksniai užgarinti skirtingu padengimo greičiu, esant skirtingam slėgiui. Eksperimentiškai patvirtinta, kad sluoksnių gamybos parametrai turi įtakos gama spinduliuotės aptikimo jautriui.


References / Nuorodos


[1] O. Korostynska, K. Arshak, D. Morris, E. Jafer, and A. Arshak, Wireless real time compact radiation detector based on Bi2O3/Nb2O5 thick film capacitors, Sensors Actuators Phys. 142, 28–33 (2008),
http://dx.doi.org/10.1016/j.sna.2007.04.001
[2] K. Arshak and O. Korostynska, Advanced Materials and Techniques for Radiation Dosimetry (Artech House, Boston, 2006),
http://www.artechhouse.com/International/Books/Advanced-Materials-and-Techniques-for-Radiation-Do-781.aspx
[3] R.F. Bunshah, Handbook of Deposition Technologies for Films and Coatings – Science, Technology and Applications (William Andrew Publishing / Noyes, Park Ridge, 1994),
http://www.amazon.co.uk/Handbook-Deposition-Technologies-Films-Coatings/dp/0815513372/
[4] B.N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York, 1980),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047107828X.html
[5] R.V. Stuart, Vacuum Technology, Thin Films, and Sputtering: An Introduction (Academic Press, New York, 1983),
http://store.elsevier.com/product.jsp?isbn=9780323139151
[6] L.I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill Book Company, New York, 1983),
http://www.amazon.co.uk/Handbook-Thin-Film-Technology-Maissel/dp/0070397422
[7] K. Arshak, O. Korostynska, and G. Hickey, Gamma radiation and ozone sensing properties of In2O3:ZnO:SnO2 thin films, Proc. SPIE 6589, 658916 (2007),
http://dx.doi.org/10.1117/12.721839
[8] S. Burachas, M. Ippolitov, V. Manko, V. Lomonosov, S. Nikulin, A. Vasiliev, Yu. Savelev, A. Apanasenko, and G. Tamulaitis, Defect clusters of variable composition as an origin of coloration of oxide crystals under thermal treatment and irradiation, Radiat. Meas. 42, 561–564 (2007),
http://dx.doi.org/10.1016/j.radmeas.2007.01.074
[9] K. Arshak and O. Korostynska, Effect of gamma radiation onto the properties of TeO2 thin films, Microelectron. Internat. 19(3), 30–34 (2002),
http://dx.doi.org/10.1108/13565360210445023
[10] K. Arshak and O. Korostynska, Gamma radiation-induced changes in the electrical and optical properties of tellurium dioxide thin films, IEEE Sensors J. 3, 717–721 (2003),
http://dx.doi.org/10.1109/JSEN.2003.820327
[11] N.F. Mott and E.A. Davis, Electronic Process in Non-Crystalline Materials (Clarendon Press, Oxford, UK, 1979),
http://www.amazon.co.uk/Electronic-Processes-Noncrystalline-Materials-Monographs/dp/0198512880/
http://ukcatalogue.oup.com/product/9780199645336.do
[12] M.V. Kurik, Urbach rule, Phys. Status Solidi A 8, 9–45 (1971),
http://dx.doi.org/10.1002/pssa.2210080102
[13] E. Colby, G. Lum, T. Plettner, and J. Spencer, Gamma radiation studies on optical materials, IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002),
http://dx.doi.org/10.1109/TNS.2002.806019
[14] K. Arshak and O. Korostynska, Thick film oxide diode structures for personal dosimetry application, Sensors Actuators Phys. 113, 319–323 (2004),
http://dx.doi.org/10.1016/j.sna.2004.01.050
[15] K.I. Arshak, J. Molloy, O. Korostynska, and J. Harris, MnO/TeO2 thin films as optical gamma radiation sensors, in: Sensors, 2004, vol. 3, Proc. IEEE (2004), pp. 1285–1288,
http://dx.doi.org/10.1109/ICSENS.2004.1426416
[16] K. Arshak and O. Korostynska, Influence of gamma radiation on the electrical properties of MnO and MnO/TeO2 thin films, Ann. Phys. 13, 87–89 (2004),
http://dx.doi.org/10.1002/andp.200310059
[17] K. Arshak and O. Korostynska, Thin- and thick-film real-time gamma radiation detectors, IEEE Sensors J. 5, 574–580 (2005),
http://dx.doi.org/10.1109/JSEN.2005.850992
[18] K. Arshak and O. Korostynska, Gamma radiation sensors arrays based on metal oxide thick films, Sensor Rev. 26, 70–75 (2006),
http://dx.doi.org/10.1108/02602280610640715