[PDF]    http://dx.doi.org/10.3952/lithjphys.49211

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 175–181 (2009)


PARAMETRIC AMPLIFICATION OF RANDOM OPTICAL FIELDS
V. Pyragaitė and A. Stabinis
aDepartment of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: viktorija.pyragaite@ff.vu.lt

Received 4 February 2009; revised 5 June 2009; accepted 18 June 2009

We demonstrate that the initiated by quantum noise parametric downconversion of pump beam can be described in classical approach as a parametric amplification of orthogonal coaxial vortex modes with random amplitudes and of various topological charges n. It is shown that in the field of Gaussian pump beam the parametric gain is largest for the fundamental mode (n = 0). The evolution of correlation in the radial spectrum of different modes under parametric amplification is analysed.
Keywords: optical parametric amplifier, optical vortex
PACS: 42.65.Yj, 42.60.Jf


PARAMETRINIS TRIUKŠMINIŲ OPTINIŲ LAUKŲ STIPRINIMAS
V. Pyragaitė, A. Stabinis
Vilniaus universitetas, Vilnius, Lietuva

Parodyta, kad kvantinio triukšmo sukeltas parametrinis generavimas gali būti aprašytas klasikiniame artinyje kaip ortogonalių bendraašių sūkurinių modų su atsitiktinėmis amplitudėmis ir įvairiais topologiniais krūviais n parametrinis stiprinimas. Kaupinant Gauso pluoštu, didžiausias parametrinis stiprinimas yra būdingas pagrindinei modai (n = 0), o kitos modos yra slopinamos. Analizuojama įvairių modų radialinio spektro koreliacijos evoliucija vykstant parametriniam stiprinimui.


References / Nuorodos


[1] A. Beržanskis, W. Chinaglia, L.A. Lugiato, K.H. Feller, and P. Di Trapani, Spatial structures in optical parametric amplification, Phys. Rev. A 60(2), 1626–1635 (1999),
http://dx.doi.org/10.1103/PhysRevA.60.1626
[2] A. Picozzi and M. Haelterman, Inuence of walkoff, dispersion, and diffraction on the coherence of parametric fluorescence, Phys. Rev. E 63(5), 056611 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.056611
[3] P. Di Trapani, G. Valiulis, W. Chinaglia, and A. Andreoni, Two-dimensional spatial solitary waves from traveling-wave parametric amplification of the quantum noise, Phys. Rev. Lett. 80(2), 265–268 (1998),
http://dx.doi.org/10.1103/PhysRevLett.80.265
[4] P. Di Trapani, A. Beržanskis, S. Minardi, S. Sapone, and W. Chinaglia, Observation of optical vortices and J0 Bessel-like beams in quantum-noise parametric amplification, Phys. Rev. Lett. 81(23), 5133–5136 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.5133
[5] O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Facio, and P. Di Trapani, Emergence of X-shaped spatiotemporal coherence in optical waves, Phys. Rev. Lett. 97(24), 243903 (2006),
http://dx.doi.org/10.1103/PhysRevLett.97.243903
[6] O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Facio, and P. Di Trapani, X-shaped space-time coherence in optical parametric generation, Phys. Rev. A 76(3), 033823 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.033823
[7] S. Orlov, A. Stabinis, V. Smilgevicius, G. Valiulis, and A. Piskarskas, Parametric excitation of X-waves by downconversion of Bessel beams in nonlinear crystals, Opt. Lett. 32(1), 68–70 (2007),
http://dx.doi.org/10.1364/OL.32.000068
[8] A. Picozzi, S.-P. Gorza, and M. Haelterman, Role of topological phase-defects in the parametric generation process, Opt. Commun. 281(11), 3196–3200 (2008),
http://dx.doi.org/10.1016/j.optcom.2008.02.004
[9] A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, Conversion of topological charge of optical vortices in a parametric frequency converter, Opt. Commun. 140(4–6), 273–276 (1997),
http://dx.doi.org/10.1016/S0030-4018(97)00178-8
[10] J. Arlt, K. Dholakia, L. Allen, and M.J. Padgett, Parametric down-conversion for light beams possessing orbital angular momentum, Phys. Rev. A 59(5), 3950–3952 (1999),
http://dx.doi.org/10.1103/PhysRevA.59.3950
[11] V. Pyragaite, A. Piskarskas, K. Regelskis, V. Smilgevicius, A. Stabinis, and S. Mikalauskas, Parametric down-conversion of higher-order Bessel optical beams in quadratic nonlinear medium, Opt. Commun. 240(1–3), 191–200 (2004),
http://dx.doi.org/10.1016/j.optcom.2004.06.031
[12] M.V. Berry, Disruption of wavefronts: Statistics of dislocations in incoherent Gaussian random waves, J. Phys. A 11(1), 27–37 (1978),
http://dx.doi.org/10.1088/0305-4470/11/1/007
[13] K. Staliunas, A. Berzanskis, and V. Jarutis, Vortex statistics in optical speckle fields, Opt. Commun. 120(1–2), 23–28 (1995),
http://dx.doi.org/10.1016/0030-4018(95)00387-N
[14] M.V. Berry and M.R. Dennis, Phase singularities in isotropic random waves, Proc. R. Soc. Lond. A 456(2001), 2059–2079 (2000),
http://dx.doi.org/10.1098/rspa.2000.0602
[15] W. Wang, S.G. Hanson, Y. Miyamoto, and M. Takeda, Experimental investigation of local properties and statistics of optical vortices in random wave fields, Phys. Rev. Lett. 94(10), 103902 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.103902
[16] K. O'Holleran, M.R. Dennis, F. Flossmann, and M.J. Padgett, Fractality of light's darkness, Phys. Rev. Lett. 100(5), 053902 (2008),
http://dx.doi.org/10.1103/PhysRevLett.100.053902