[PDF]
http://dx.doi.org/10.3952/lithjphys.49211
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 175–181 (2009)
PARAMETRIC AMPLIFICATION OF
RANDOM OPTICAL FIELDS
V. Pyragaitė and A. Stabinis
aDepartment of Quantum Electronics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: viktorija.pyragaite@ff.vu.lt
Received 4 February 2009; revised 5
June 2009; accepted 18 June 2009
We demonstrate that the initiated
by quantum noise parametric downconversion of pump beam can be
described in classical approach as a parametric amplification of
orthogonal coaxial vortex modes with random amplitudes and of
various topological charges n. It is shown that in the
field of Gaussian pump beam the parametric gain is largest for the
fundamental mode (n = 0). The evolution of correlation in
the radial spectrum of different modes under parametric
amplification is analysed.
Keywords: optical parametric amplifier,
optical vortex
PACS: 42.65.Yj, 42.60.Jf
PARAMETRINIS TRIUKŠMINIŲ OPTINIŲ
LAUKŲ STIPRINIMAS
V. Pyragaitė, A. Stabinis
Vilniaus universitetas, Vilnius, Lietuva
Parodyta, kad kvantinio triukšmo sukeltas
parametrinis generavimas gali būti aprašytas klasikiniame artinyje
kaip ortogonalių bendraašių sūkurinių modų su atsitiktinėmis
amplitudėmis ir įvairiais topologiniais krūviais n
parametrinis stiprinimas. Kaupinant Gauso pluoštu, didžiausias
parametrinis stiprinimas yra būdingas pagrindinei modai (n
= 0), o kitos modos yra slopinamos. Analizuojama įvairių modų
radialinio spektro koreliacijos evoliucija vykstant parametriniam
stiprinimui.
References / Nuorodos
[1] A. Beržanskis, W. Chinaglia, L.A. Lugiato, K.H. Feller, and P.
Di Trapani, Spatial structures in optical parametric amplification,
Phys. Rev. A 60(2), 1626–1635 (1999),
http://dx.doi.org/10.1103/PhysRevA.60.1626
[2] A. Picozzi and M. Haelterman, Inuence of walkoff, dispersion,
and diffraction on the coherence of parametric fluorescence, Phys.
Rev. E 63(5), 056611 (2001),
http://dx.doi.org/10.1103/PhysRevE.63.056611
[3] P. Di Trapani, G. Valiulis, W. Chinaglia, and A. Andreoni,
Two-dimensional spatial solitary waves from traveling-wave
parametric amplification of the quantum noise, Phys. Rev. Lett. 80(2),
265–268 (1998),
http://dx.doi.org/10.1103/PhysRevLett.80.265
[4] P. Di Trapani, A. Beržanskis, S. Minardi, S. Sapone, and W.
Chinaglia, Observation of optical vortices and J0
Bessel-like beams in quantum-noise parametric amplification, Phys.
Rev. Lett. 81(23), 5133–5136 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.5133
[5] O. Jedrkiewicz, A. Picozzi, M. Clerici, D. Facio, and P. Di
Trapani, Emergence of X-shaped spatiotemporal coherence in
optical waves, Phys. Rev. Lett. 97(24), 243903 (2006),
http://dx.doi.org/10.1103/PhysRevLett.97.243903
[6] O. Jedrkiewicz, M. Clerici, A. Picozzi, D. Facio, and P. Di
Trapani, X-shaped space-time coherence in optical parametric
generation, Phys. Rev. A 76(3), 033823 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.033823
[7] S. Orlov, A. Stabinis, V. Smilgevicius, G. Valiulis, and A.
Piskarskas, Parametric excitation of X-waves by downconversion of
Bessel beams in nonlinear crystals, Opt. Lett. 32(1), 68–70
(2007),
http://dx.doi.org/10.1364/OL.32.000068
[8] A. Picozzi, S.-P. Gorza, and M. Haelterman, Role of topological
phase-defects in the parametric generation process, Opt. Commun. 281(11),
3196–3200 (2008),
http://dx.doi.org/10.1016/j.optcom.2008.02.004
[9] A. Beržanskis, A. Matijošius, A. Piskarskas, V. Smilgevičius,
and A. Stabinis, Conversion of topological charge of optical
vortices in a parametric frequency converter, Opt. Commun. 140(4–6),
273–276 (1997),
http://dx.doi.org/10.1016/S0030-4018(97)00178-8
[10] J. Arlt, K. Dholakia, L. Allen, and M.J. Padgett, Parametric
down-conversion for light beams possessing orbital angular momentum,
Phys. Rev. A 59(5), 3950–3952 (1999),
http://dx.doi.org/10.1103/PhysRevA.59.3950
[11] V. Pyragaite, A. Piskarskas, K. Regelskis, V. Smilgevicius, A.
Stabinis, and S. Mikalauskas, Parametric down-conversion of
higher-order Bessel optical beams in quadratic nonlinear medium,
Opt. Commun. 240(1–3), 191–200 (2004),
http://dx.doi.org/10.1016/j.optcom.2004.06.031
[12] M.V. Berry, Disruption of wavefronts: Statistics of
dislocations in incoherent Gaussian random waves, J. Phys. A 11(1),
27–37 (1978),
http://dx.doi.org/10.1088/0305-4470/11/1/007
[13] K. Staliunas, A. Berzanskis, and V. Jarutis, Vortex statistics
in optical speckle fields, Opt. Commun. 120(1–2), 23–28
(1995),
http://dx.doi.org/10.1016/0030-4018(95)00387-N
[14] M.V. Berry and M.R. Dennis, Phase singularities in isotropic
random waves, Proc. R. Soc. Lond. A 456(2001), 2059–2079
(2000),
http://dx.doi.org/10.1098/rspa.2000.0602
[15] W. Wang, S.G. Hanson, Y. Miyamoto, and M. Takeda, Experimental
investigation of local properties and statistics of optical vortices
in random wave fields, Phys. Rev. Lett. 94(10), 103902
(2005),
http://dx.doi.org/10.1103/PhysRevLett.94.103902
[16] K. O'Holleran, M.R. Dennis, F. Flossmann, and M.J. Padgett,
Fractality of light's darkness, Phys. Rev. Lett. 100(5),
053902 (2008),
http://dx.doi.org/10.1103/PhysRevLett.100.053902