[PDF]    http://dx.doi.org/10.3952/lithjphys.49215

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 221–227 (2009)


LASER-INDUCED IRON OXIDATION
A. Amulevičius, D. Baltrūnas, A. Daugvila, R. Davidonis, K. Mažeika, V. Remeikis, Č. Sipavičius, and A. Undzėnas
Institute of Physics, Savanoriu 231, LT-02300 Vilnius, Lithuania
E-mail: kestas@ar.fi.lt

Received 10 March 2009; accepted 18 June 2009

Iron oxidation in air flux has been studied and the iron response to laser radiation has been evaluated. Effect of cooling rate on the oxide formation has been demonstrated. The Mössbauer conversion electron spectra have shown that a larger amount of oxides is formed in the surface layer. Any clearly expressed temperature dependence of the oxidation process has not been observed. It has been experimentally determined that the oxide amount depends upon the sample collection site.
Keywords: Mössbauer spectroscopy, laser treatment, iron oxidation
PACS: 42.62.Cf, 82.80.Ej, 81.65.Mq


GELEŽIES OKSIDACIJA VEIKIANT LAZERIO SPINDULIUOTE
A. Amulevičius, D. Baltrūnas, A. Daugvila, R. Davidonis, K. Mažeika, V. Remeikis, Č. Sipavičius, A. Undzėnas
Fizikos institutas, Vilnius, Lietuva

Įvertinta geležies dalelių, atsirandančių lazerinio pjovimo metu, oksidacija oro sraute. Nustatyta, kad priklausomai nuo pjovimo sąlygų ir pjovimo produktų surinkimo vietos oksiduojasi 30–60 % geležies. Įvairių geležies oksidų susidarymui gali būti reikšmingas pradžioje susiformavusio FeO dalinis skilimas į α-Fe ir Fe3O4 fazes. 23–37 % visos geležies sudarė geležis FeO fazėje. Mesbauerio sugerties ir konversijos elektronų spektrų palyginimas rodo, kad šio oksido gali būti dvigubai daugiau dalelių paviršiuje. Konversijos elektronų spektrai taip pat rodo, kad paviršiuje magnetitas Fe3O4 mažiau stechiometriškas. Geležies oksidų susidarymas lazeriu pjaunant geležies juostą buvo palygintas su geležies oksidacija arba jos pokyčiais veikiant lazerio spinduliu geležies miltelių ir molio bandinius. Įvairių geležies oksidų susidarymo skirtumus esant kitokioms temperatūros sąlygoms – kaitinant krosnyje ar pjaunant impulsiniu lazeriu, išlaikant aukštesnę temperatūrą trumpiau (2 ms), – gali nulemti skirtingos oksidacijos produktų vėsimo sąlygos.


References / Nuorodos


[1] N.D. Tomashov and G.P. Chernova, Theory of Corrosion and Corrosion Resistant Structural Alloys (Metallurgiya, Moscow, 1986) [in Russian]
[2] A. Amulevičius, M. Balčiūniene, B. Petrėtis, and R. Pileckis, On the synthesis of Fe–B system thin films from powder mixtures under the influence of laser radiation, Thin Solid Films 229, 192195 (1993),
http://dx.doi.org/10.1016/0040-6090(93)90363-T
[3] T. Liu, H. Shao, and X. Li, Synthesis of Fe–Al nanoparticles by hydrogen plasmametal reaction, J. Phys. Cond. Matter 15, 25072513 (2003),
http://dx.doi.org/10.1088/0953-8984/15/17/306
[4] R.B. Schwarz, Microscopic model for mechanical alloying, Mater. Sci. Forum 269272, 665674 (1998),
http://dx.doi.org/10.4028/www.scientific.net/MSF.269-272.665
[5] A. Amulevičius, A. Daugvila, R. Davidonis, and Č. Sipavičius, Chemical composition of nanostructured erosion products upon laser cutting of steel, Phys. Met. Metallogr. 85, 84–89 (1998)
[6] A. Amulevičius, A. Daugvila, R. Davidonis, and Č. Sipavičius, Study of magnetic properties of material produced by laser cutting of steel, Metallophys. New Technol. 20, 5664 (1998) [in Russian]
[7] A. Amulevičius, M. Balčiūnienė, B. Petrėtis, and R. Pileckis, On the synthesis of FeC compounds under the influence of laser radiation, Thin Solid Films 240, 6065 (1994),
http://dx.doi.org/10.1016/0040-6090(94)90694-7
[8] A. Amulevicius, M. Balciuniene, B. Petretis, and D. Juzakenas, Mechanical properties of steel 20KhN2M after laser treatment, Metal Sci. Heat Treatment 36, 1821 (1994) [translated from Russian: Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, 12–14 (1994)],
http://dx.doi.org/10.1007/BF01408596
[9] A. Amulevicius, A. Daugvila, R. Davidonis, and K. Mazeika, The influence of laser irradiation time on Fe–Si–C system structure, Acta Phys. Pol. A 104, 537548 (2003),
http://przyrbwn.icm.edu.pl/APP/ABSTR/104/a104-6-537.html
[10] V.V. Chekin, Mössbauer Spectroscopy of Iron, Tin, and Gold (Energiya, Moscow, 1981) [in Russian]
[11] S. Joshi, D.M. Phase, S.M. Kanetkar, S.V. Ghaisas, S.B. Ogale, and V.G. Bhide, A conversion electron Mössbauer spectroscopy study of pulsed laser treatment at α-Fe2O3/H2O interface, Hyperfine Interact. 41, 689692 (1988),
http://dx.doi.org/10.1007/BF02400484
[12] N.R. Bulakh, S.V. Ghaisas, S.A. Kulkarni, S.M. Kanetkar, S.B. Ogale, and S.K. Date, Surface oxides produced during discharge in water ambient iron surface: A conversion electron Mössbauer spectroscopic study, Hyperfine Interact. 41, 641644 (1988),
http://dx.doi.org/10.1007/BF02400472
[13] F.E. Wagner and U. Wagner, Mössbauer spectra of clays and ceramics, Hyperfine Interact. 154, 3582 (2004),
http://dx.doi.org/10.1023/B:HYPE.0000032113.42496.f2
[14] Ch. Sipavichyus, R. Shlezhas, and A. Amulevicius, Dynamics of auxiliary gas outflow under laser cutting: Models and the experiment, in: Progress in Research and Development of High-Power Industrial CO2 Lasers, Proc. SPIE 4165, 244252 (2000),
http://dx.doi.org/10.1117/12.394127