[PDF]
http://dx.doi.org/10.3952/lithjphys.49215
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 221–227 (2009)
LASER-INDUCED IRON OXIDATION
A. Amulevičius, D. Baltrūnas, A. Daugvila, R. Davidonis, K.
Mažeika, V. Remeikis, Č. Sipavičius, and A. Undzėnas
Institute of Physics, Savanoriu 231, LT-02300 Vilnius,
Lithuania
E-mail: kestas@ar.fi.lt
Received 10 March 2009; accepted 18
June 2009
Iron oxidation in air flux has
been studied and the iron response to laser radiation has been
evaluated. Effect of cooling rate on the oxide formation has been
demonstrated. The Mössbauer conversion electron spectra have shown
that a larger amount of oxides is formed in the surface layer. Any
clearly expressed temperature dependence of the oxidation process
has not been observed. It has been experimentally determined that
the oxide amount depends upon the sample collection site.
Keywords: Mössbauer spectroscopy, laser
treatment, iron oxidation
PACS: 42.62.Cf, 82.80.Ej, 81.65.Mq
GELEŽIES OKSIDACIJA VEIKIANT
LAZERIO SPINDULIUOTE
A. Amulevičius, D. Baltrūnas, A. Daugvila, R.
Davidonis, K. Mažeika, V. Remeikis, Č. Sipavičius, A. Undzėnas
Fizikos institutas, Vilnius, Lietuva
Įvertinta geležies dalelių, atsirandančių
lazerinio pjovimo metu, oksidacija oro sraute. Nustatyta, kad
priklausomai nuo pjovimo sąlygų ir pjovimo produktų surinkimo
vietos oksiduojasi 30–60 % geležies. Įvairių geležies oksidų
susidarymui gali būti reikšmingas pradžioje susiformavusio FeO
dalinis skilimas į α-Fe ir Fe3O4
fazes. 23–37 % visos geležies sudarė geležis FeO fazėje.
Mesbauerio sugerties ir konversijos elektronų spektrų palyginimas
rodo, kad šio oksido gali būti dvigubai daugiau dalelių
paviršiuje. Konversijos elektronų spektrai taip pat rodo, kad
paviršiuje magnetitas Fe3O4 mažiau
stechiometriškas. Geležies oksidų susidarymas lazeriu pjaunant
geležies juostą buvo palygintas su geležies oksidacija arba jos
pokyčiais veikiant lazerio spinduliu geležies miltelių ir molio
bandinius. Įvairių geležies oksidų susidarymo skirtumus esant
kitokioms temperatūros sąlygoms – kaitinant krosnyje ar pjaunant
impulsiniu lazeriu, išlaikant aukštesnę temperatūrą trumpiau (2
ms), – gali nulemti skirtingos oksidacijos produktų vėsimo
sąlygos.
References / Nuorodos
[1] N.D. Tomashov and G.P. Chernova, Theory of Corrosion and
Corrosion Resistant Structural Alloys (Metallurgiya, Moscow,
1986) [in Russian]
[2] A. Amulevičius, M. Balčiūniene, B. Petrėtis, and R. Pileckis,
On the synthesis of Fe–B system thin films from powder mixtures
under the influence of laser radiation, Thin Solid Films 229,
192–195 (1993),
http://dx.doi.org/10.1016/0040-6090(93)90363-T
[3] T. Liu, H. Shao, and X. Li, Synthesis of Fe–Al nanoparticles by
hydrogen plasma–metal reaction, J. Phys. Cond. Matter 15,
2507–2513 (2003),
http://dx.doi.org/10.1088/0953-8984/15/17/306
[4] R.B. Schwarz, Microscopic model for mechanical alloying, Mater.
Sci. Forum 269–272, 665–674
(1998),
http://dx.doi.org/10.4028/www.scientific.net/MSF.269-272.665
[5] A. Amulevičius, A. Daugvila, R. Davidonis, and Č. Sipavičius,
Chemical composition of nanostructured erosion products upon laser
cutting of steel, Phys. Met. Metallogr. 85, 84–89 (1998)
[6] A. Amulevičius, A. Daugvila, R. Davidonis, and Č. Sipavičius,
Study of magnetic properties of material produced by laser cutting
of steel, Metallophys. New Technol. 20, 56–64 (1998)
[in Russian]
[7] A. Amulevičius, M. Balčiūnienė, B. Petrėtis, and R. Pileckis, On
the synthesis of Fe–C compounds under the influence of laser
radiation, Thin Solid Films 240, 60–65 (1994),
http://dx.doi.org/10.1016/0040-6090(94)90694-7
[8] A. Amulevicius, M. Balciuniene, B. Petretis, and D. Juzakenas,
Mechanical properties of steel 20KhN2M after laser treatment, Metal
Sci. Heat Treatment 36, 18–21 (1994) [translated from
Russian: Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1,
12–14 (1994)],
http://dx.doi.org/10.1007/BF01408596
[9] A. Amulevicius, A. Daugvila, R. Davidonis, and K. Mazeika, The
influence of laser irradiation time on Fe–Si–C system structure,
Acta Phys. Pol. A 104, 537–548 (2003),
http://przyrbwn.icm.edu.pl/APP/ABSTR/104/a104-6-537.html
[10] V.V. Chekin, Mössbauer Spectroscopy of Iron, Tin, and Gold
(Energiya, Moscow, 1981) [in Russian]
[11] S. Joshi, D.M. Phase, S.M. Kanetkar, S.V. Ghaisas, S.B. Ogale,
and V.G. Bhide, A conversion electron Mössbauer spectroscopy study
of pulsed laser treatment at α-Fe2O3/H2O
interface, Hyperfine Interact. 41, 689–692 (1988),
http://dx.doi.org/10.1007/BF02400484
[12] N.R. Bulakh, S.V. Ghaisas, S.A. Kulkarni, S.M. Kanetkar, S.B.
Ogale, and S.K. Date, Surface oxides produced during discharge in
water ambient iron surface: A conversion electron Mössbauer
spectroscopic study, Hyperfine Interact. 41, 641–644
(1988),
http://dx.doi.org/10.1007/BF02400472
[13] F.E. Wagner and U. Wagner, Mössbauer spectra of clays and
ceramics, Hyperfine Interact. 154, 35–82 (2004),
http://dx.doi.org/10.1023/B:HYPE.0000032113.42496.f2
[14] Ch. Sipavichyus, R. Shlezhas, and A. Amulevicius, Dynamics of
auxiliary gas outflow under laser cutting: Models and the
experiment, in: Progress in Research and Development of
High-Power Industrial CO2 Lasers,
Proc. SPIE 4165, 244–252 (2000),
http://dx.doi.org/10.1117/12.394127