[PDF]    http://dx.doi.org/10.3952/lithjphys.49302

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 335–339 (2009)


SIMULATION OF INDOOR OZONE CONCENTRATION
S. Byčenkienėa, V. Valuntaitėb, and R. Girgždienėa,b
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: bycenkiene@ar.fi.lt
bVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 26 March 2009; revised 27 May 2009; accepted 18 June 2009

This paper presents a set of data obtained in experimental and theoretical studies of the indoor ozone concentration with displacement of the ozone source. The measurements were conducted for three typical room congurations. The simulation takes into account actual room sizes and deposition rates on the surface material to predict the indoor ozone concentration. Both experimental and simulated results suggest that the air exchange rate and the material surface in the room play a significant role in determining ozone levels in indoor environments. The simulated indoor ozone concentration was compared with experimental results (correlation r = 0.8), and the accuracy of the model was tested.
Keywords: indoor air, ozone, concentration, modelling
PACS: 92.60.Sz, 91.10.Vr


OZONO KONCENTRACIJOS PATALPOSE MODELIAVIMAS
S. Byčenkienėa, V. Valuntaitėb, R. Girgždienėa,b
aFizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Nagrinėjami ozono koncentracijos pasiskirstymo skaitinio modeliavimo ir eksperimentiniai duomenys, gauti generuojant ozoną patalpose esant skirtingoms ventiliacijos sąlygoms. Ozono koncentracijoms patalpose įvertinti pritaikytas RISK modelio algoritmas, atsižvelgiant į kambarių parametrus, ozono nusėdimo ant paklotinių paviršių greičius bei oro srautus. Eksperimentinių ir modeliavimo duomenų palyginimas parodė, kad ozono koncentraciją patalpose labiausiai veikė oro pasikeitimo tarp kambarių greitis ir paklotinių paviršių rūšys. Tiriant modelio tikslumą, skaitinio modeliavimo rezultatai palyginti su eksperimentiniais duomenimis (koreliacija r = 0,8).


References / Nuorodos


[1] J.G. Klenø, P.A. Clausen, C.J. Weschler, and P. Wolkoff, Determination of ozone removal rates by selected building products using the FLEC emission cell, Environ. Sci. Technol. 35(12), 2548–2553 (2001),
http://dx.doi.org/10.1021/es000284n
[2] D.J. Sutton, K.M. Nodolf, and K.K. Makino, Predicting ozone concentrations in residential structures, ASHRAE J. 19(9), 21–26 (1976)
[3] C.J. Weschler, Ozone in indoor environments: Concentration and chemistry, Indoor Air 10(4), 269–288 (2000),
http://dx.doi.org/10.1034/j.1600-0668.2000.010004269.x
[4] T. Grøntoft, Measurements and modeling of the ozone deposition velocity to concrete tiles, including the effect of diffusion, Atmos. Environ. 38(1), 49–58 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.09.044
[5] S. C Lee, Sanches Lam, and Ho Kin Fai, Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber, Build. Environ. 36(7), 837–842 (2001),
http://dx.doi.org/10.1016/S0360-1323(01)00009-9
[6] V. Valuntaitė and R. Girgždienė, Investigation of ozone emission and dispersion from photocopying machines, J. Environ. Eng. Landsc. Manag. XV(2), 61–67 (2007),
http://www.tandfonline.com/doi/abs/10.1080/16486897.2007.9636910
[7] K. Lee, J. Vallarino, T. Dumyahn, H. Özkaynak, and J.D. Spengler, Ozone decay rates in residences, J. Air Waste Manag. Assoc. 49, 1238–1244 (1999),
http://dx.doi.org/10.1080/10473289.1999.10463913
[8] E. Uhde and T. Salthammer, Impact of reaction products from building materials and furnishings on indoor air quality – A review of recent advances in indoor chemistry, Atmos. Environ. 41(15), 3111–3128 (2007),
http://dx.doi.org/10.1016/j.atmosenv.2006.05.082
[9] R.S. Hayes, Use of an indoor air quality model (IAQM) to estimate indoor ozone levels, J. Air Waste Manag. Assoc. 41(2), 161–170 (1991),
http://dx.doi.org/10.1080/10473289.1991.10466833
[10] T. Grøntoft, Dry deposition of ozone on buildings materials. Chamber measurements and modeling of the time dependent deposition, Atmos. Environ. 36, 5661–5670 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00701-X
[11] C.J. Weschler and H.C. Shields, Potential reactions among indoor pollutants, Atmos. Environ. 31(21), 3487–3495 (1997),
http://dx.doi.org/10.1016/S1352-2310(97)00219-7
[12] L.E. Sparks, IAQ Model for Windows RISK Version 1.0 User Manual, EPA-600/R-96-037 (NTIS PB96-501929) (Office of Research and Development, Research Triangle Park, USA, 1996)
[13] B.A. Tichenor, Z. Guo, L.E. Sparks, and M.A. Mason, The interaction of vapor phase organic compounds with indoor sinks, Indoor Air 1, 23–35 (1991),
http://dx.doi.org/10.1111/j.1600-0668.1991.03-11.x
[14] V. Valuntaitė, The Investigation and Assessment of the Man-made Ozone Formation and Dispersion, PhD thesis (Technika, Vilnius, 2009) 151 p.