[PDF]
http://dx.doi.org/10.3952/lithjphys.49302
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 335–339 (2009)
SIMULATION OF INDOOR OZONE
CONCENTRATION
S. Byčenkienėa, V. Valuntaitėb, and R.
Girgždienėa,b
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: bycenkiene@ar.fi.lt
bVilnius Gediminas Technical University, Saulėtekio
11, LT-10223 Vilnius, Lithuania
Received 26 March 2009; revised 27
May 2009; accepted 18 June 2009
This paper presents a set of data
obtained in experimental and theoretical studies of the indoor
ozone concentration with displacement of the ozone source. The
measurements were conducted for three typical room congurations.
The simulation takes into account actual room sizes and deposition
rates on the surface material to predict the indoor ozone
concentration. Both experimental and simulated results suggest
that the air exchange rate and the material surface in the room
play a significant role in determining ozone levels in indoor
environments. The simulated indoor ozone concentration was
compared with experimental results (correlation r = 0.8),
and the accuracy of the model was tested.
Keywords: indoor air, ozone,
concentration, modelling
PACS: 92.60.Sz, 91.10.Vr
OZONO KONCENTRACIJOS PATALPOSE
MODELIAVIMAS
S. Byčenkienėa, V. Valuntaitėb, R.
Girgždienėa,b
aFizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Nagrinėjami ozono koncentracijos pasiskirstymo
skaitinio modeliavimo ir eksperimentiniai duomenys, gauti
generuojant ozoną patalpose esant skirtingoms ventiliacijos
sąlygoms. Ozono koncentracijoms patalpose įvertinti pritaikytas
RISK modelio algoritmas, atsižvelgiant į kambarių parametrus,
ozono nusėdimo ant paklotinių paviršių greičius bei oro srautus.
Eksperimentinių ir modeliavimo duomenų palyginimas parodė, kad
ozono koncentraciją patalpose labiausiai veikė oro pasikeitimo
tarp kambarių greitis ir paklotinių paviršių rūšys. Tiriant
modelio tikslumą, skaitinio modeliavimo rezultatai palyginti su
eksperimentiniais duomenimis (koreliacija r = 0,8).
References / Nuorodos
[1] J.G. Klenø, P.A. Clausen, C.J. Weschler, and P. Wolkoff,
Determination of ozone removal rates by selected building products
using the FLEC emission cell, Environ. Sci. Technol. 35(12),
2548–2553 (2001),
http://dx.doi.org/10.1021/es000284n
[2] D.J. Sutton, K.M. Nodolf, and K.K. Makino, Predicting ozone
concentrations in residential structures, ASHRAE J. 19(9),
21–26 (1976)
[3] C.J. Weschler, Ozone in indoor environments: Concentration and
chemistry, Indoor Air 10(4), 269–288 (2000),
http://dx.doi.org/10.1034/j.1600-0668.2000.010004269.x
[4] T. Grøntoft, Measurements and modeling of the ozone deposition
velocity to concrete tiles, including the effect of diffusion,
Atmos. Environ. 38(1), 49–58 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.09.044
[5] S. C Lee, Sanches Lam, and Ho Kin Fai, Characterization of VOCs,
ozone, and PM10 emissions from office equipment in an
environmental chamber, Build. Environ. 36(7), 837–842
(2001),
http://dx.doi.org/10.1016/S0360-1323(01)00009-9
[6] V. Valuntaitė and R. Girgždienė, Investigation of ozone emission
and dispersion from photocopying machines, J. Environ. Eng. Landsc.
Manag. XV(2), 61–67 (2007),
http://www.tandfonline.com/doi/abs/10.1080/16486897.2007.9636910
[7] K. Lee, J. Vallarino, T. Dumyahn, H. Özkaynak, and J.D.
Spengler, Ozone decay rates in residences, J. Air Waste Manag.
Assoc. 49, 1238–1244 (1999),
http://dx.doi.org/10.1080/10473289.1999.10463913
[8] E. Uhde and T. Salthammer, Impact of reaction products from
building materials and furnishings on indoor air quality – A review
of recent advances in indoor chemistry, Atmos. Environ. 41(15),
3111–3128 (2007),
http://dx.doi.org/10.1016/j.atmosenv.2006.05.082
[9] R.S. Hayes, Use of an indoor air quality model (IAQM) to
estimate indoor ozone levels, J. Air Waste Manag. Assoc. 41(2),
161–170 (1991),
http://dx.doi.org/10.1080/10473289.1991.10466833
[10] T. Grøntoft, Dry deposition of ozone on buildings materials.
Chamber measurements and modeling of the time dependent deposition,
Atmos. Environ. 36, 5661–5670 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00701-X
[11] C.J. Weschler and H.C. Shields, Potential reactions among
indoor pollutants, Atmos. Environ. 31(21), 3487–3495 (1997),
http://dx.doi.org/10.1016/S1352-2310(97)00219-7
[12] L.E. Sparks, IAQ Model for Windows RISK Version 1.0 User
Manual, EPA-600/R-96-037 (NTIS PB96-501929) (Office of
Research and Development, Research Triangle Park, USA, 1996)
[13] B.A. Tichenor, Z. Guo, L.E. Sparks, and M.A. Mason, The
interaction of vapor phase organic compounds with indoor sinks,
Indoor Air 1, 23–35 (1991),
http://dx.doi.org/10.1111/j.1600-0668.1991.03-11.x
[14] V. Valuntaitė, The Investigation and Assessment of the
Man-made Ozone Formation and Dispersion, PhD thesis (Technika,
Vilnius, 2009) 151 p.