[PDF]
http://dx.doi.org/10.3952/lithjphys.49304
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 299–303 (2009)
INVESTIGATIONS OF VARIOUS CW
TERAHERTZ PHOTOMIXERS
A. Urbanowicza, A. Geižutisa,b, and A.
Krotkusa
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: aurban@pfi.lt
bDepartment of Electronic Systems, Vilnius Gediminas
Technical University, Naugarduko 41, LT-03227 Vilnius, Lithuania
Received 29 January 2009; revised 3
August 2009; accepted 15 September 2009
Various cw terahertz (THz)
photomixers were investigated and compared. Beams of two cw,
tunable, single mode DFB (distributed feedback) diode lasers were
used for illumination of the devices. Simple photoexcited gap
structure, spiral-type and dipole-type integrated antennae
patterns photomixers were used while carrying out investigations.
Cw THz radiation has been generated by photoconductive devices
made using low-temperature-grown GaAs layers. Antennae fabricated
on GaAs and GaBiAs layers were used for coherent detection of cw
THz radiation. It was obtained that the sensitivity of GaBiAs
detectors is more than two times higher than in the case of GaAs
detectors. GaAs emitters with integrated spiral-type antennae were
most efficiently emitting in the low frequency range; enhanced
bias voltages of such devices result in generated THz power
comparable with the photomixers with interdigitated contact
structures.
Keywords: optical mixing, terahertz
radiation, GaAs, GaBiAs
PACS: 42.65.Re, 72.30.+q, 78.47.+p
NETRŪKIOS TERAHERCINĖS
SPINDULIUOTĖS FOTOMAIŠIKLIŲ TYRIMAI
A. Urbanowicza, A. Geižutisa,b, A. Krotkusa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Ištirti ir palyginti skirtingi netrūkios
terahercinės (THz) spinduliuotės fotomaišikliai, kurių žadinimui
buvo naudojami du derinamo bangos ilgio vienamodžiai lazeriniai
diodai. Atliekant tyrimus buvo naudojami dipolinių ir spiralinių
antenų fotomaišikliai. Netrūkios THz spinduliuotės generavimui
naudotos dipolinės arba spiralinės antenos, suformuotos ant žemoje
temperatūroje (ŽT) auginto GaAs sluoksnio paviršiaus. THz
spinduliuotė koherentiškai detektuota dipolinėmis antenomis,
suformuotomis ant ŽT GaAs ir ŽT GaBiAs epitaksinių sluoksnių.
Paaiškėjo, kad GaBiAs detektorių jautris du kartus didesnis nei
GaAs detektorių. GaAs emiteriai su spiralinėmis antenomis
efektyviausiai generuoja žemų dažnių srityje; didinant maitinimo
įtampą šių maišiklių optinės galios vertimo į THz spinduliuotę
efektyvumas siekia 2
10
–5.
References / Nuorodos
[1] A.C. Warren, N. Katzenellenbogen, D. Grischkowsky, J.M. Woodall,
M.R. Melloch, and N. Otsuka, Sub-picosecond, freely propagating
electromagnetic pulse generation and detection using GaAs:As
epilayers, Appl. Phys. Lett. 58, 1512–1514 (1991),
http://dx.doi.org/10.1063/1.105162
[2] A.S. Weling and D.H. Auston, Novel sources and detectors for
coherent tunable narrow-band terahertz radiation in free space, J.
Opt. Soc. Am. B 13, 2783–2791 (1996),
http://dx.doi.org/10.1364/JOSAB.13.002783
[3] M. Hyodo, M. Tani, S. Matsuuro, N. Onodera, and K. Sakai,
Generation of millimetre-wave radiation using a
dual-longitudinal-mode microchip laser, Electron. Lett. 32,
1589–1591 (1996),
http://dx.doi.org/10.1049/el:19961041
[4] E.R. Brown, K.A. McIntosh, K.B. Nichols, and C.L. Dennis,
Photomixing up to 3.8 THz in low-temperature-grown GaAs, Appl. Phys.
Lett. 66, 285–287 (1995),
http://dx.doi.org/10.1063/1.113519
[5] S. Verghese, K.A. McIntosh, S. Calawa,W.F. Dinatale, E.K. Duerr,
and K.A. Molvar, Generation and detection of coherent terahertz
waves using two photomixers, Appl. Phys. Lett. 73, 3824–3826
(1998),
http://dx.doi.org/10.1063/1.122906
[6] I.S. Gregory, C. Baker, W.R. Tribe, I.V. Bradley, M.J. Evans,
E.H. Linfield, A.G. Davies, and M. Missous, Optimization of
photomixers and antennas for continuous-wave terahertz emission,
IEEE J. Quantum Electron. 41, 717–728 (2005),
http://dx.doi.org/10.1109/JQE.2005.844471
[7] R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, Continuous wave
terahertz spectrometer as a noncontact thickness measuring device,
Appl. Opt. 14, 3023–3026 (2008),
http://dx.doi.org/10.1364/AO.47.003023
[8] A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A.Wolos, J.
Siegert, S. Marcinkevicius, J.F. Roux, and J.L. Coutaz, Be-doped
low-temperature-grown GaAs material for optoelectronic switches, IEE
Proc. Optoelectron. 149(3), 111–115 (2002),
http://dx.doi.org/10.1049/ip-opt:20020435
[9] V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A.
Krotkus, K.M. Yu, and W. Walukiewicz, Characterization of
low-temperature molecular-beam-epitaxy grown GaBiAs layers,
Semicond. Sci. Technol. 22, 819–823 (2007),
http://dx.doi.org/10.1088/0268-1242/22/7/026
[10] T. Tiedje, E.C. Young, and A. Mascarenhas, Growth and
properties of the dilute bismide semiconductor GaAs1–xBix
a complementary alloy to the dilute nitrides, Int. J. Nanotechnol. 5(9–12),
963–983 (2008),
http://dx.doi.org/10.1504/IJNT.2008.019828
[11] Anselm J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A.
Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner,
Precisely tunable continuous-wave terahertz source with
interferometric frequency control, Rev. Sci. Instrum. 79,
044702 (2008),
http://dx.doi.org/10.1063/1.2905033
[12] M. Mikulics, M. Marso, I. Cámara Mayorga, R. Güsten, S.
Stanček, P. Kováč, S. Wu, Xia Li, M. Khafizov, R. Sobolewski, E.A.
Michael, R. Schieder, M. Wolter, D. Buca, A. Förster, P. Kordoš, and
H. Lüth, Photomixers fabricated on nitrogen-ion-implanted GaAs,
Appl. Phys. Lett. 87, 041106 (2005),
http://dx.doi.org/10.1063/1.2006983