[PDF]    http://dx.doi.org/10.3952/lithjphys.49306

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 253–260 (2009)


A UNIVERSAL POTENTIAL FOR QUASIRELATIVISTIC RADIAL ORBITALS
P. Bogdanovicha, A. Bernotasa, and A. Rinkevičiusb
aVilnius University Institute of Theoretical Physics and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavlas@itpa.lt
bFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania

Received 16 May 2009; revised 10 July 2009; accepted 15 September 2009

A possibility to extend the universal Gáspár potential, used for obtaining the initial radial orbitals in iterative solving of quasirelativistic Hartree–Fock equations, is investigated. The extension is achieved via introduction of variable parameters instead of fixed ones that depend on the number of electrons in a configuration and the ionization degree of an atom.
Keywords: universal Gáspár potential, quasirelativistic Hartree–Fock equations, iterative process, initial radial orbitals
PACS: 31.15.Ne, 31.25.Eb, 31.30.Jv


UNIVERSALUS POTENCIALAS KVAZIRELIATYVISTINĖMS RADIALIOSIOMS ORBITALĖMS
P. Bogdanovičiusa, A. Bernotasa, A. Rinkevičiusb
aVilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
bVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva

Pakeitus fiksuotas parametrų A0 ir B0 vertes Gáspár potenciale parametrais, priklausančiais nuo elektronų skaičiaus konfigūracijoje bei jonizacijos laipsnio, A(N,I) ir B(N,I) arba Aq(N,I) ir Bq(N,I), žymiai padidėja potencialo tikslumas, o gaunamos orbitalės gerokai efektyviau tinka spręsti kvazireliatyvistines Hatree ir Foko lygtis esant ir mažai, ir maksimaliai jonizacijai. Šis potencialas veiksmingas ir tada, kai nepavyksta iteraciškai išspręsti kvazireliatyvistinių lygčių naudojant paprastąjį Gáspár potencialą atitinkančias pradines funkcijas.


References / Nuorodos


[1] V. Fock, Näherungsmethods zur Lösung des quantenmechanischen Mehrkörperproblems, Z. Phys. 61, 126–148 (1930),
http://dx.doi.org/10.1007/BF01340294
[2] R. Gáspár, Über ein analytisches Näherungsverfahren zur Bestimmung von Eigenfunktionen und Energieeigenwerten von Atomelektronen, Acta Phys. Hung. XX, 151–170 (1952),
http://dx.doi.org/10.1007/BF03156643
[3] R. Gáspár, On the universal potential of atoms, Lietuvos Fizikos Rinkinys 3(1–2), 41–45 (1963)
[4] A. Jucys, I.I. Glembockys, and R. Gáspár, Investigations with modified universal potential fields, Acta Phys. Hung. 23, 425–441 (1967),
http://dx.doi.org/10.1007/BF03156782
[5] Ch. Froese Fischer, The MCHF atomic-structure package, Comput. Phys. Commun. 128, 635–636 (2000),
http://dx.doi.org/10.1016/S0010-4655(00)00009-6
[6] R. Karazija, P.O. Bogdanovicius, and A. Jucys, On the numerical solution of Hartree–Fock equations independent of coupling scheme, Acta Phys. Hung. 27, 467–475 (1969),
http://dx.doi.org/10.1007/BF03156767
[7] P. Bogdanovich, Z. Rudzikas, and S. Šadžiuvienė, The use of the Gáspár potential in theoretical investigations of the spectra of atoms and ions, Acta Phys. Hung. 51, 109–115 (1981),
http://dx.doi.org/10.1007/BF03155569
[8] P. Bogdanovich and O. Rancova, Quasi-relativistic Hartree–Fock equations consistent with Breit–Pauli approach, Phys. Rev. A 74, 052501 (2006),
http://dx.doi.org/10.1103/PhysRevA.74.052501
[9] P. Bogdanovich and O. Rancova, Adjustment of the quasirelativistic equations for p electrons, Phys. Rev. A 76, 012507 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.012507
[10] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving quasi-relativistic equations for hydrogen-like ions with account of the finite size of a nucleus, Nucl. Instrum. Methods B 235, 145–148 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.162