[PDF]
http://dx.doi.org/10.3952/lithjphys.49306
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 253–260 (2009)
A UNIVERSAL POTENTIAL FOR
QUASIRELATIVISTIC RADIAL ORBITALS
P. Bogdanovicha, A. Bernotasa, and A.
Rinkevičiusb
aVilnius University Institute of Theoretical Physics
and Astronomy, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavlas@itpa.lt
bFaculty of Physics, Vilnius University, Saulėtekio
9, LT-10222 Vilnius, Lithuania
Received 16 May 2009; revised 10
July 2009; accepted 15 September 2009
A possibility to extend the
universal Gáspár potential, used for obtaining the initial radial
orbitals in iterative solving of quasirelativistic Hartree–Fock
equations, is investigated. The extension is achieved via
introduction of variable parameters instead of fixed ones that
depend on the number of electrons in a configuration and the
ionization degree of an atom.
Keywords: universal Gáspár potential,
quasirelativistic Hartree–Fock equations, iterative process,
initial radial orbitals
PACS: 31.15.Ne, 31.25.Eb, 31.30.Jv
UNIVERSALUS POTENCIALAS
KVAZIRELIATYVISTINĖMS RADIALIOSIOMS ORBITALĖMS
P. Bogdanovičiusa, A. Bernotasa, A.
Rinkevičiusb
aVilniaus universiteto Teorinės fizikos ir
astronomijos institutas, Vilnius, Lietuva
bVilniaus universiteto Fizikos fakultetas,
Vilnius, Lietuva
Pakeitus fiksuotas parametrų A0
ir B0 vertes Gáspár potenciale parametrais,
priklausančiais nuo elektronų skaičiaus konfigūracijoje bei
jonizacijos laipsnio, A(N,I) ir B(N,I)
arba Aq(N,I) ir Bq(N,I),
žymiai padidėja potencialo tikslumas, o gaunamos orbitalės gerokai
efektyviau tinka spręsti kvazireliatyvistines Hatree ir Foko
lygtis esant ir mažai, ir maksimaliai jonizacijai. Šis potencialas
veiksmingas ir tada, kai nepavyksta iteraciškai išspręsti
kvazireliatyvistinių lygčių naudojant paprastąjį Gáspár potencialą
atitinkančias pradines funkcijas.
References / Nuorodos
[1] V. Fock, Näherungsmethods zur Lösung des quantenmechanischen
Mehrkörperproblems, Z. Phys. 61, 126–148 (1930),
http://dx.doi.org/10.1007/BF01340294
[2] R. Gáspár, Über ein analytisches Näherungsverfahren zur
Bestimmung von Eigenfunktionen und Energieeigenwerten von
Atomelektronen, Acta Phys. Hung. XX, 151–170 (1952),
http://dx.doi.org/10.1007/BF03156643
[3] R. Gáspár, On the universal potential of atoms, Lietuvos Fizikos
Rinkinys 3(1–2), 41–45 (1963)
[4] A. Jucys, I.I. Glembockys, and R. Gáspár, Investigations with
modified universal potential fields, Acta Phys. Hung. 23,
425–441 (1967),
http://dx.doi.org/10.1007/BF03156782
[5] Ch. Froese Fischer, The MCHF atomic-structure package, Comput.
Phys. Commun. 128, 635–636 (2000),
http://dx.doi.org/10.1016/S0010-4655(00)00009-6
[6] R. Karazija, P.O. Bogdanovicius, and A. Jucys, On the numerical
solution of Hartree–Fock equations independent of coupling scheme,
Acta Phys. Hung. 27, 467–475 (1969),
http://dx.doi.org/10.1007/BF03156767
[7] P. Bogdanovich, Z. Rudzikas, and S. Šadžiuvienė, The use of the
Gáspár potential in theoretical investigations of the spectra of
atoms and ions, Acta Phys. Hung. 51, 109–115 (1981),
http://dx.doi.org/10.1007/BF03155569
[8] P. Bogdanovich and O. Rancova, Quasi-relativistic Hartree–Fock
equations consistent with Breit–Pauli approach, Phys. Rev. A 74,
052501 (2006),
http://dx.doi.org/10.1103/PhysRevA.74.052501
[9] P. Bogdanovich and O. Rancova, Adjustment of the
quasirelativistic equations for p electrons, Phys. Rev. A 76,
012507 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.012507
[10] P. Bogdanovich, V. Jonauskas, and O. Rancova, Solving
quasi-relativistic equations for hydrogen-like ions with account of
the finite size of a nucleus, Nucl. Instrum. Methods B 235,
145–148 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.162