[PDF]
http://dx.doi.org/10.3952/lithjphys.49310
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 317–322 (2009)
PECULIARITIES OF IONIC TRANSPORT
OF OXYGEN VACANCY CONDUCTING SUPERIONIC CERAMICS
A. Kežionisa, T. Šalkusa, A. Petraitisa,
J. Dudonisb, G. Laukaitisb, D. Milčiusc,
V. Kazlauskienėd, J. Miškinisd, and A.F.
Orliukasa
aFaculty of Physics, Vilnius University, Saulėtekio
9, LT-10222 Vilnius, Lithuania
E-mail: tomas.salkus@ff.vu.lt
bKaunas University of Technology, Studentų 50,
LT-51368 Kaunas, Lithuania
cLithuanian Energy Institute, Breslaujos 3, LT-44403
Kaunas, Lithuania
dInstitute of Materials Science and Applied
Research, Vilnius University, Naugarduko 24, LT-03225 Vilnius,
Lithuania
Received 10 June 2009; revised 8
September 2009; accepted 15 September 2009
The powder of Zr0.92Y0.08O2
(YSZ), Ce0.9Gd0.1O2–δ
(GDC) and Sm0.15Ce0.85O2–δ
(SDC) compounds from the company Fuel Cell Materials were
used for sintering of ceramic samples in air at temperature T
= 1673 K. The surface of the prepared ceramics was studied by
scanning electron microscopy (SEM) and X-ray photoelectron
spectroscopy (XPS). Results of the performed XPS investigations
revealed that cerium exists as Ce3+ and Ce4+
in both the Ce0.9Gd0.1O2–δ
and Sm0.15Ce0.85O2–δ
ceramics. XPS spectra of O 1s of all the investigated materials
demonstrated two peaks corresponding to oxygen O(1) in crystal
lattice and to adsorbed oxygen O(2). Measurements of complex
impedance, electric conductivity, dielectric permittivity, and
tan δ of dielectric losses were carried out in
frequency range 106–1.2⋅109 Hz at
temperatures ranging from 300 K to 700 K. Relaxation dispersion of
the electric parameters has been found for all the compounds. The
dispersion is caused by the oxygen vacancy (VO**)
transport in grains of the ceramic samples.
Keywords: YSZ, GDC, SDC ceramics, solid
oxide fuel cells, ionic conductivity
PACS: 81.15.Jj, 66.30.Dn, 82.47.Ed, 73.61.-r
DEGUONIES VAKANSIJŲ PERNAŠOS
YPATUMAI SUPERJONINĖSE KERAMIKOSE
A. Kežionisa, T. Šalkusa, A. Petraitisa,
J. Dudonisb, G. Laukaitisb, D. Milčiusc,
V. Kazlauskienėd, J. Miškinisd, A.F.
Orliukasa
aVilniaus universitetas, Vilnius, Lietuva
bVienos technologijos universiteto Fotonikos
institutas, Viena, Austrija
cUAB „Šviesos konversija“, Vilnius, Lietuva
d Fastlite, Palaiseau, Prancūzija
Pagamintos Zr0,92Y0,08O2
(YSZ), Ce0,9Gd0,1O2–δ
(GDC) ir Sm0,15Ce0,85O2–δ
(SDC) junginių keramikos. Keramikų gamybai naudoti firmos „Fuel
Cell Materials“ milteliai. Visų junginių keramikos buvo kepinamos
1 h T = 1773 K temperatūroje. Keramikų paviršiai tirti
skenuojančiu elektroniniu mikroskopu (SEM) bei Rentgeno spindulių
fotoelektroninės spektroskopijos (XPS) metodu. XPS tyrimų
rezultatai įgalino patikslinti matuotų junginių elementinę sudėtį.
Parodyta, kad SDC bei GDC junginiuose be trivalenčių Ce3+
jonų aptinkami ir keturvalenčiai Ce4+ katijonai.
Kompleksinis keramikų laidis, kompleksinė varža, dielektrinė
skvarba ir tan δ ištirti 106–1,2⋅109
Hz dažnių ruože ir 300–700 K temperatūrų intervale. Visuose
junginiuose aptikta relaksacinė elektrinių parametrų dispersija.
Ši dispersija atsiranda dėl deguonies vakansijų (VO**)
pernašos kietųjų elektrolitų keramikos kristalituose.
References / Nuorodos
[1] I. Riess, J. Power Sources 175, 325–337 (2008),
http://dx.doi.org/10.1016/j.jpowsour.2007.09.041
[2] J.L.M. Rupp, A. Infortuna, and L.J. Gauckler, Acta Materialia 54,
1721–1730 (2006),
http://dx.doi.org/10.1016/j.actamat.2005.11.032
[3] Yi Liu and L.E. Lao, Solid State Ionics 177, 159–163
(2006),
http://dx.doi.org/10.1016/j.ssi.2005.10.002
[4] G. Laukaitis, J. Dudonis, A.F. Orliukas, and D. Milcius, Solid
State Ionics 179, 182–187 (2008),
http://dx.doi.org/10.1016/j.ssi.2007.12.030
[5] Rui-Quan Liu, Ya-Hong Xie, Ji-De Wang, Zhi-Jie Li, and Ben-Hui
Wang, Solid State Ionics 177, 73–76 (2006),
http://dx.doi.org/10.1016/j.ssi.2005.07.018
[6] G. Chiodelli, L. Malavasi, V. Massarotti, P. Mustarelli, and E.
Quartarone, Solid State Ionics 176, 1505–1512 (2005),
http://dx.doi.org/10.1016/j.ssi.2005.03.017
[7] W. Zając and J. Molenda, Solid State Ionics 179, 154–158
(2008),
http://dx.doi.org/10.1016/j.ssi.2007.12.047
[8] D.P. Fagg, J.C.C. Abrantes, D. Pérez-Coll, P. Núñez, V.V.
Kharton, and J.R. Frade, Electrochim. Acta 48, 1023–1029
(2003),
http://dx.doi.org/10.1016/S0013-4686(02)00816-2
[9] Jiang Kai, Meng Jian, He Zhigi, Ren Yufang, and Su Qiang, Sci.
China B 42(2), 159–163 (1999),
http://dx.doi.org/10.1007/BF02875512
[10] J.L.M. Rupp, T. Drobek, A. Rossi, and L.J. Gauckler, Chem.
Mater. 19, 1134–1142 (2007),
http://dx.doi.org/10.1021/cm061449f
[11] J.P. Zhao, Y. Li, W.H. Xin, and X. Li, J. Solid Sate Chem. 181,
239–244 (2008),
http://dx.doi.org/10.1016/j.jssc.2007.11.007
[12] A.F. Orliukas, A. Kezionis, and E. Kazakevicius, Solid State
Ionics 176, 2037–2043 (2005),
http://dx.doi.org/10.1016/j.ssi.2004.08.042
[13] D. Briggs and M.P. Seah, Practical Surface Analysis by
Auger and X-Ray Photoelectron Spectroscopy (John Wiley &
Sons, Chichester–New-York–Brisbane–Toronto–Singapore, 1983),
http://www.amazon.co.uk/Practical-Surface-Analysis-Photoelectron-Spectroscopy/dp/047126279X/
[14] F. Zhang, P. Wang, J. Koberstein, S. Khalid, and Siu-Wai Chan,
Surf. Sci. 563, 74–82 (2004),
http://dx.doi.org/10.1016/j.susc.2004.05.138
[15] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R. Sobiestianskas,
E. Kazakevicius, and A. Orliukas, Phys. Status Solidi A 183,
323–330 (2001),
http://dx.doi.org/10.1002/1521-396X(200102)183:2<323::AID-PSSA323>3.0.CO;2-6
[16] A. Orliukas, P. Bohac, K. Sasaki, and L.J. Gauckler, Solid
State Ionics 72, 35–38 (1994),
http://dx.doi.org/10.1016/0167-2738(94)90121-X