[PDF]
http://dx.doi.org/10.3952/lithjphys.49311
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 277–284 (2009)
APPLICATION OF CLIFFORD ALGEBRA
TO ANALYSIS OF SPIN PROPERTIES OF SEMICONDUCTORS
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 14 May 2009; revised 11 September 2009;
accepted 15 September 2009
The quantum mechanics is
formulated in terms of state vectors in the Hilbert space and
operators that act on these vectors. However, using the Clifford
algebra an alternative formulation is possible, where multivectors
in n-dimensional linear Euclidean space represent both the
state of the system and quantum operators. In this report a short
overview is presented on how the Clifford algebra can be used to
investigate electron and hole spin properties in semiconductors.
In particular, calculation of free electron and hole spin
precession in cubic semiconductors with the help of the Clifford
algebra is discussed.
Keywords: Clifford algebra, geometric
algebra, cubic semiconductors, spintronics
PACS: 75.10.Jm, 85.75.-d, 72.25.Dc, 71.70.Ej
CLIFFORDO ALGEBROS TAIKYMAS
SUKINIŲ SAVYBIŲ ANALIZĖJE PUSLAIDININKIAMS
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Kvantinė mechanika suformuluota matematinės
Hilberto erdvės sąvokomis, kur svarbų vaidmenį turi būsenų
vektoriai bei operatoriai, kurie vienus Hilberto erdvės vektorius
perveda į kitus. Tačiau yra žinoma alternatyvi kvantinės
mechanikos formuluotė [1, 2], kurioje dalelės būsena bei
fizikinius dydžius aprašantys operatoriai yra nusakomi Cliffordo
algebros sąvokomis, būtent, per daugiamatės Euklido erdvės
vektorius ir multivektorius. Pastarieji yra sukonstruoti iš n-matės
tiesinės Euklido erdvės bazinių vektorių visų galimų sandaugų.
Būdinga tokių bazinių vektorių savybė ta, kad jie tarpusavyje
antikomutuoja, todėl Cliffordo algebros multivektoriais galima
aprašyti spinorius bei jų dinamiką išoriniuose laukuose.
Multivektoriaus projekcijos, kurios nusako matuojamus dydžius, yra
realūs (o ne kompleksiniai, kaip Hilberto erdvės atveju) skaičiai.
Cliffordo algebroje dalelės būsena ir operatoriai yra lygiavertės
sąvokos ir nusakomos panašiai. Straipsnyje trumpai apžvelgta, kaip
galima pritaikyti Cliffordo algebros formalizmą sukinių savybių
analizėje. Aptarta kubinės simetrijos puslaidininkio laidumo
juostos elektrono ir valentinės juostos skylės sukinio precesija
bei kaip ją būtų galima apskaičiuoti naudojant Cliffordo algebrą.
References / Nuorodos
[1] P. Lounesto, Clifford Algebras and Spinors (Cambridge
University Press, Cambridge, 1997),
http://www.cambridge.org/lt/academic/subjects/mathematics/algebra/clifford-algebras-and-spinors-2nd-edition?format=PB
[2] C. Doran and A. Lasenby, Geometric Algebra for Physicists
(Cambridge University Press, Cambridge, 2003),
http://dx.doi.org/10.1017/CBO9780511807497
[3] D. Hestenes, Oersted medal lecture 2002: Reforming the
mathematical language of physics, Am. J. Phys. 71(2),
104–121 (2003),
http://dx.doi.org/10.1119/1.1522700
[4] C. Doran, Geometric Algebra and its Application to
Mathematical Physics, PhD thesis (University of Cambridge,
1994)
[5] C. Doran, A. Lasenby, S. Gull, S. Somaroo, and A. Challinor,
Spacetime algebra and electron physics, arXiv:quant-ph/0509178v1,
1–93 (2005),
http://arxiv.org/abs/quant-ph/0509178
[6] D. Hestenes, New Foundations for Classical Mechanics
(Reidel, Boston, 1985),
http://link.springer.com/book/10.1007/978-94-009-4802-0
[7] T.G. Vold, An introduction to geometric algebra with an
application in rigid body mechanics, Am. J. Phys. 61(6),
491–504 (1993),
http://dx.doi.org/10.1119/1.17201
[8] B. Jancewicz, Multivectors and Clifford Algebra in
Electrodynamics (World Scientific, Singapore, 1988),
http://dx.doi.org/10.1142/0419
[9] W. Baylis, Electrodynamics: A Modern Geometric Approach
(Birkhäuser, Boston, 1999),
http://www.springer.com/gp/book/9780817640255
[10] T.G. Vold, An introduction to geometric calculus and its
application to electrodynamics, Am. J. Phys. 61(6), 505–513
(1993),
http://dx.doi.org/10.1119/1.17202
[11] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for
Computer Science (Morgan Kaufmann Publishers, 2007–2008),
http://store.elsevier.com/product.jsp?isbn=9780080553108
[12] C. Kittel, Quantum Theory of Solids (John Wiley and
Sons, New York, 1963),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471624128.html
[13] A. Dargys, Hole spin surfaces in A3B5
semiconductors, Phys. Status Solidi B 241(13), 2954–2961
(2004),
http://dx.doi.org/10.1002/pssb.200402078
[14] A. Dargys, Free electron spin in cubic semiconductors,
Lithuanian J. Phys. 46(1), 27–31 (2006),
http://dx.doi.org/10.3952/lithjphys.46115
[15] A. Dargys, Precession trajectories of the hole spin in
zinc-blende semiconductors, Solid-State Electron. 51(1),
93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[16] A. Dargys, Bloch sphere, spin surfaces and spin precession in
quantum wells, in Spintronics: Materials, Applications and
Devices, eds. G.C. Lombardi and G.E. Bianchi (NOVA Publishers,
New York, 2009),
http://www.amazon.co.uk/Spintronics-Materials-Applications-Giulia-Lombardi/dp/1604567341
[17] G. Dresselhaus, Spin-orbit coupling effects in zinc blende
structures, Phys. Rev. 100(2), 580–586 (1955),
http://dx.doi.org/10.1103/PhysRev.100.580
[18] Yu.A. Bychkov and E.I. Rashba, Oscillatory effects and the
magnetic susceptibility of carriers in inversion layers, J. Phys. C
17, 6039–6045 (1984),
http://dx.doi.org/10.1088/0022-3719/17/33/015
[19] C. Doran, A. Lasenby, S. Gull, S. Somaroo, and A. Challinor,
Spacetime algebra and electron physics, Adv. Imag. Electron Phys. 95,
271–365 (1996),
http://dx.doi.org/10.1016/S1076-5670(08)70158-7
[20] D. Hestenes, Spin and uncertainty in the interpretation of
quantum mechanics, Am. J. Phys. 47(5), 399–415 (1979),
http://dx.doi.org/10.1119/1.11806
[21] A. Dargys, Analysis of electron spin in semiconductors using
geometric algebra, Phys. Scripta 79(5), 055702-1–6 (2009),
http://dx.doi.org/10.1088/0031-8949/79/05/055702
[22] P. Yu and M. Cardona, Fundamentals of Semiconductors
(Springer-Verlag, Berlin–Heidelberg–New York, 2005) Ch. 2,
http://link.springer.com/book/10.1007/978-3-642-00710-1
[23] J.M. Luttinger and W. Kohn, Motion of electrons and holes in
perturbed periodic fields, Phys. Rev. 97(4), 869–883 (1955),
http://dx.doi.org/10.1103/PhysRev.97.869
[24] J.M. Luttinger, Quantum theory of cyclotron resonances in
semiconductors: General theory, Phys. Rev. 102(4), 1030–1041
(1956),
http://dx.doi.org/10.1103/PhysRev.102.1030
[25] E. Demler and S.C. Zhang, Non-Abelian holonomy of BCS and SDW
quasiparticles, Ann. Phys. 271, 83–119 (1999),
http://dx.doi.org/10.1006/aphy.1998.5866
[26] S. Murakami, N. Nagaosa, and S.-C. Zhang, SU(2) non-Abelian
holonomy and dissipationless spin current in semiconductors, Phys.
Rev. B 69(23), 235206-1–14 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.235206
[27] A. Dargys, Valence band of cubic semiconductors from viewpoint
of Clifford algebra, Acta Phys. Pol. A 116(2), 226–231
(2009),
http://przyrbwn.icm.edu.pl/APP/ABSTR/116/a116-2-19.html
[28] A. Dargys, Application of Clifford algebra to analysis of spin
properties of semiconductors, accepted for publication in Phys.
Scripta,
http://dx.doi.org/10.1088/0031-8949/79/05/055702
[29] A. Dargys, Hole spin surfaces in A3B5
semiconductors, Phys. Status Solidi B 241(13), 2954–2961
(2004),
http://dx.doi.org/10.1002/pssb.200402078
[30] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric
Calculus (Reidel, Boston, 1984),
http://dx.doi.org/10.1007/978-94-009-6292-7