[PDF]    http://dx.doi.org/10.3952/lithjphys.49311

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 277–284 (2009)


APPLICATION OF CLIFFORD ALGEBRA TO ANALYSIS OF SPIN PROPERTIES OF SEMICONDUCTORS
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 14 May 2009; revised 11 September 2009; accepted 15 September 2009

The quantum mechanics is formulated in terms of state vectors in the Hilbert space and operators that act on these vectors. However, using the Clifford algebra an alternative formulation is possible, where multivectors in n-dimensional linear Euclidean space represent both the state of the system and quantum operators. In this report a short overview is presented on how the Clifford algebra can be used to investigate electron and hole spin properties in semiconductors. In particular, calculation of free electron and hole spin precession in cubic semiconductors with the help of the Clifford algebra is discussed.
Keywords: Clifford algebra, geometric algebra, cubic semiconductors, spintronics
PACS: 75.10.Jm, 85.75.-d, 72.25.Dc, 71.70.Ej


CLIFFORDO ALGEBROS TAIKYMAS SUKINIŲ SAVYBIŲ ANALIZĖJE PUSLAIDININKIAMS
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Kvantinė mechanika suformuluota matematinės Hilberto erdvės sąvokomis, kur svarbų vaidmenį turi būsenų vektoriai bei operatoriai, kurie vienus Hilberto erdvės vektorius perveda į kitus. Tačiau yra žinoma alternatyvi kvantinės mechanikos formuluotė [1, 2], kurioje dalelės būsena bei fizikinius dydžius aprašantys operatoriai yra nusakomi Cliffordo algebros sąvokomis, būtent, per daugiamatės Euklido erdvės vektorius ir multivektorius. Pastarieji yra sukonstruoti iš n-matės tiesinės Euklido erdvės bazinių vektorių visų galimų sandaugų. Būdinga tokių bazinių vektorių savybė ta, kad jie tarpusavyje antikomutuoja, todėl Cliffordo algebros multivektoriais galima aprašyti spinorius bei jų dinamiką išoriniuose laukuose. Multivektoriaus projekcijos, kurios nusako matuojamus dydžius, yra realūs (o ne kompleksiniai, kaip Hilberto erdvės atveju) skaičiai. Cliffordo algebroje dalelės būsena ir operatoriai yra lygiavertės sąvokos ir nusakomos panašiai. Straipsnyje trumpai apžvelgta, kaip galima pritaikyti Cliffordo algebros formalizmą sukinių savybių analizėje. Aptarta kubinės simetrijos puslaidininkio laidumo juostos elektrono ir valentinės juostos skylės sukinio precesija bei kaip ją būtų galima apskaičiuoti naudojant Cliffordo algebrą.


References / Nuorodos


[1] P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, Cambridge, 1997),
http://www.cambridge.org/lt/academic/subjects/mathematics/algebra/clifford-algebras-and-spinors-2nd-edition?format=PB
[2] C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003),
http://dx.doi.org/10.1017/CBO9780511807497
[3] D. Hestenes, Oersted medal lecture 2002: Reforming the mathematical language of physics, Am. J. Phys. 71(2), 104–121 (2003),
http://dx.doi.org/10.1119/1.1522700
[4] C. Doran, Geometric Algebra and its Application to Mathematical Physics, PhD thesis (University of Cambridge, 1994)
[5] C. Doran, A. Lasenby, S. Gull, S. Somaroo, and A. Challinor, Spacetime algebra and electron physics, arXiv:quant-ph/0509178v1, 1–93 (2005),
http://arxiv.org/abs/quant-ph/0509178
[6] D. Hestenes, New Foundations for Classical Mechanics (Reidel, Boston, 1985),
http://link.springer.com/book/10.1007/978-94-009-4802-0
[7] T.G. Vold, An introduction to geometric algebra with an application in rigid body mechanics, Am. J. Phys. 61(6), 491–504 (1993),
http://dx.doi.org/10.1119/1.17201
[8] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1988),
http://dx.doi.org/10.1142/0419
[9] W. Baylis, Electrodynamics: A Modern Geometric Approach (Birkhäuser, Boston, 1999),
http://www.springer.com/gp/book/9780817640255
[10] T.G. Vold, An introduction to geometric calculus and its application to electrodynamics, Am. J. Phys. 61(6), 505–513 (1993),
http://dx.doi.org/10.1119/1.17202
[11] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science (Morgan Kaufmann Publishers, 2007–2008),
http://store.elsevier.com/product.jsp?isbn=9780080553108
[12] C. Kittel, Quantum Theory of Solids (John Wiley and Sons, New York, 1963),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471624128.html
[13] A. Dargys, Hole spin surfaces in A3B5 semiconductors, Phys. Status Solidi B 241(13), 2954–2961 (2004),
http://dx.doi.org/10.1002/pssb.200402078
[14] A. Dargys, Free electron spin in cubic semiconductors, Lithuanian J. Phys. 46(1), 27–31 (2006),
http://dx.doi.org/10.3952/lithjphys.46115
[15] A. Dargys, Precession trajectories of the hole spin in zinc-blende semiconductors, Solid-State Electron. 51(1), 93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[16] A. Dargys, Bloch sphere, spin surfaces and spin precession in quantum wells, in Spintronics: Materials, Applications and Devices, eds. G.C. Lombardi and G.E. Bianchi (NOVA Publishers, New York, 2009),
http://www.amazon.co.uk/Spintronics-Materials-Applications-Giulia-Lombardi/dp/1604567341
[17] G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Phys. Rev. 100(2), 580–586 (1955),
http://dx.doi.org/10.1103/PhysRev.100.580
[18] Yu.A. Bychkov and E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C 17, 6039–6045 (1984),
http://dx.doi.org/10.1088/0022-3719/17/33/015
[19] C. Doran, A. Lasenby, S. Gull, S. Somaroo, and A. Challinor, Spacetime algebra and electron physics, Adv. Imag. Electron Phys. 95, 271–365 (1996),
http://dx.doi.org/10.1016/S1076-5670(08)70158-7
[20] D. Hestenes, Spin and uncertainty in the interpretation of quantum mechanics, Am. J. Phys. 47(5), 399–415 (1979),
http://dx.doi.org/10.1119/1.11806
[21] A. Dargys, Analysis of electron spin in semiconductors using geometric algebra, Phys. Scripta 79(5), 055702-1–6 (2009),
http://dx.doi.org/10.1088/0031-8949/79/05/055702
[22] P. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin–Heidelberg–New York, 2005) Ch. 2,
http://link.springer.com/book/10.1007/978-3-642-00710-1
[23] J.M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev. 97(4), 869–883 (1955),
http://dx.doi.org/10.1103/PhysRev.97.869
[24] J.M. Luttinger, Quantum theory of cyclotron resonances in semiconductors: General theory, Phys. Rev. 102(4), 1030–1041 (1956),
http://dx.doi.org/10.1103/PhysRev.102.1030
[25] E. Demler and S.C. Zhang, Non-Abelian holonomy of BCS and SDW quasiparticles, Ann. Phys. 271, 83–119 (1999),
http://dx.doi.org/10.1006/aphy.1998.5866
[26] S. Murakami, N. Nagaosa, and S.-C. Zhang, SU(2) non-Abelian holonomy and dissipationless spin current in semiconductors, Phys. Rev. B 69(23), 235206-1–14 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.235206
[27] A. Dargys, Valence band of cubic semiconductors from viewpoint of Clifford algebra, Acta Phys. Pol. A 116(2), 226–231 (2009),
http://przyrbwn.icm.edu.pl/APP/ABSTR/116/a116-2-19.html
[28] A. Dargys, Application of Clifford algebra to analysis of spin properties of semiconductors, accepted for publication in Phys. Scripta,
http://dx.doi.org/10.1088/0031-8949/79/05/055702
[29] A. Dargys, Hole spin surfaces in A3B5 semiconductors, Phys. Status Solidi B 241(13), 2954–2961 (2004),
http://dx.doi.org/10.1002/pssb.200402078
[30] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus (Reidel, Boston, 1984),
http://dx.doi.org/10.1007/978-94-009-6292-7