[PDF]
http://dx.doi.org/10.3952/lithjphys.49312
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 267–275 (2009)
LUMINESCENCE OF Cd0.7Mn0.3Te
CRYSTALS IN MAGNETIC FIELD: LINEWIDTH, LANDAU QUANTIZATION, AND
CARRIER EFFECTIVE MASS
L. Barauskaitėa, R. Brazisa, V. Ivanovb,
and M. Godlewskib
aSemiconductor Physics Institute, A. Gotauto 11,
LT-01108 Vilnius, Lithuania
E-mail: lb@pfi.lt
bInstitute of Physics of the Polish Academy of
Sciences, Al. Lotników 32/46, 00-668 Warsaw, Poland
Received 22 April 2009; revised 20
June 2009; accepted 15 September 2009
Cd
0.7Mn
0.3Te
crystal photoluminescence is studied in magnetic field up to 7 T
in Voigt geometry at 1.6–1.7 K temperature. The range of magnetic
field where the approximation of effective band gap narrowing by
the s, p – d exchange-interaction-induced term correctly describes
experimental results is discussed. Luminescence linewidth (FWHM)
broadening due to composition disorder and magnetization
fluctuations is evaluated. Functional dependence on magnetic field
of magnetic part in broadening, the FWHM(
B)
magn.,
is determined. From the patterns of Landau quantization in
luminescence spectra the carrier effective mass value
= 0.104 is calculated and its increase in magnetic field is
obtained. Contribution of nonparabolicity and band coupling
effects is evaluated in the observed carrier effective mass growth
effect.
Keywords: photoluminescence, linewidth
(FWHM), effective mass, composition disorder fluctuations,
magnetic fluctuations
PACS: 78.20.Ls, 78.55.Et, 05.40.-a
Cd0,7Mn0,3Te
KRISTALŲ LIUMINESCENCIJA MAGNETINIAME LAUKE: LINIJOS PLOTIS,
LANDAU KVANTAVIMAS IR KRŪVININKŲ EFEKTINĖ MASĖ
L. Barauskaitėa, R. Brazisa, V. Ivanovb,
M. Godlewskib
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bLenkijos MA Fizikos institutas, Varšuva,
Lenkija
Cd
0,7Mn
0,3Te kristalų
liuminescencija tirta 1,6–1,7 K temperatūroje magnetiniame lauke
iki 7 T Voigto geometrijoje. Eksperimentiniai liuminescencijos
maksimumo poslinkio magnetiniame lauke rezultatai rodo, kad
spindulinio šuolio energijos magnetiniame lauke galimi aprašymai
(aproksimacija vien pakaitinės s, p – d sąveikos nariu arba pilnas
aprašymas, atsižvelgiant į narius dėl ciklotroninio ir savitojo
sukininio suskilimų) negali tiksliai apibūdinti efektyvaus
draudžiamų energijų tarpo kitimo visame magnetinių laukų
intervale. Pilnasis rekombinacinės energijos aprašymas (su visais
nariais) tiksliai apibūdina eksperimentines energijos vertes tik
silpnuose magnetiniuose laukuose
B < 2 T. Tuo tarpu
taikant aproksimaciją vien pakaitinės s, p – d sąveikos nariu
gaunamas geras sutapimas su eksperimento rezultatais esant
stipresniems magnetiniams laukams (
B > 4 T).
Eksperimentiškai stebimam efektyviam draudžiamų energijų tarpo
siaurėjimui aprašyti reikalinga didesnė pakaitinių konstantų
N0(
/3)
vertė, kai
B > 2 T. Linijos pločio (FWHM)
priklausomybėje nuo magnetinio lauko įskaityti d
Eg/d
x
=
f(
B) ir eksitoninio tūrio
Vexc(
B)
mažėjimo reiškiniai, kurie nežymiai platina liuminescencijos
liniją. Nustatyta, kad linijos (FWHM) išplitimas dėl magnetinių
fliuktuacijų magnetiniame lauke mažėja pagal eksponentinę
funkciją, kurios rodiklis yra magnetinio jono sukininių
fliuktuacijų jėgos vertė. Iš Landau kvantavimo liuminescencijos
spektruose apskaičiuota krūvininkų efektinės masės vertė
= 0,104±
0,007 ir
rasta, kad šis parametras magnetiniame lauke didėja netiesiškai.
Įvertinus neparaboliškumo ir juostų sąveikos įtaką nustatyta, kad
šie reiškiniai nepaaiškina stebimo
(
B)
augimo magnetiniame lauke.
References / Nuorodos
[1] J.K. Furdyna, Diluted magnetic semiconductors, J. Appl. Phys. 64,
R29–R64 (1988),
http://dx.doi.org/10.1063/1.341700
[2] O. Goede and W. Heimbrodt, Optical properties of (Zn,Mn) and
(Cd,Mn) chalcogenide mixed crystals and superlattices, Phys. Status
Solidi B 146, 11–61 (1988),
http://dx.doi.org/10.1002/pssb.2221460102
[3] N.B. Brandt and V.V. Moshchalkov, Semimagnetic semiconductors,
Adv. Phys. 33, 193–255 (1984),
http://dx.doi.org/10.1080/00018738400101661
[4] J.A. Gaj, J. Ginter, and R.R. Galazka, Exchange interaction of
manganese 3d5 states with band electrons in Cd1–xMnxTe,
Phys. Status Solidi B 89, 655–662 (1978),
http://dx.doi.org/10.1002/pssb.2220890241
[5] R. Brazis, L. Barauskaitė, V. Ivanov, and M. Godlewski,
Luminescence of Cd0.7Mn0.3Te crystals in
transverse magnetic field, Acta Phys. Pol. A 109(6), 731–741
(2006),
http://przyrbwn.icm.edu.pl/APP/ABSTR/109/a109-6-6.html
[6] J.A. Gaj, R. Planel, and G. Fishman, Relation of magneto-optical
properties of free excitons to spin alignement of Mn2+
ions in CdII1–xMnxTeVI
, Solid State Commun. 29, 435–438 (1979),
http://dx.doi.org/10.1016/0038-1098(79)91211-0
[7] D. Heiman, P.A. Wolff, and J. Warnock, Spin-flip Raman
scattering, bound magnetic polaron, and fluctuations in (Cd,Mn)Se,
Phys. Rev. B 27, 4848–4860 (1983),
http://dx.doi.org/10.1103/PhysRevB.27.4848
[8] D. Heiman, Y. Shapira, and S. Foner, Spin-flip Raman scattering
and magnetisation measurements on (Cd,Mn)S, Solid State Commun. 45,
899–902 (1983),
http://dx.doi.org/10.1016/0038-1098(83)90331-9
[9] I.A. Merkulov, D.R. Yakovlev, A. Keller, W. Ossau, J. Geurts, A.
Waag, G. Landwehr, G. Karczewski, T. Wojtowcz, and J. Kossut,
Kinetic exchange between the conduction band electrons and magnetic
ions in quantum confined structures, Phys. Rev. Lett. 83,
1431–1434 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.1431
[10] E.F. Schubert, E.O. Gobel, Y. Horikoshi, K. Ploog, and H.J.
Queisser, Alloy broadening in photoluminescence spectra of Al1–xGaxAs,
Phys. Rev. B 30, 813–820 (1984),
http://dx.doi.org/10.1103/PhysRevB.30.813
[11] O. Goede, L. John, and D. Henning, Compositional disorder
induced broadening for free excitons in II–VI semiconducting mixed
crystals, Phys. Status Solidi B 89, K183–K186 (1978),
http://dx.doi.org/10.1002/pssb.2220890262
[12] K.V. Kavokin, I.A. Merkulov, D.R. Yakovlev, W. Ossau, and G.
Landwehr, Exciton localization in semimagnetic semiconductors probed
by magnetic polarons, Phys. Rev. B 60, 16499–16505 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.16499
[13] S. Takeyama, S. Adachi, Y. Takagi, and V.F. Aguekian, Exciton
localization by magnetic polarons and alloy fluctuations in the
diluted magnetic semiconductor Cd1–xMnxTe,
Phys. Rev. B 51, 4858–4864 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4858
[14] M. Godlewski, V.Yu. Ivanov, A. Khachapuridze, R. Narkowicz, and
M.R. Phillips, Effects of localization in CdTe-based quantum well
structures, Proc. SPIE 4415, 86–91 (2001),
http://dx.doi.org/10.1117/12.425475
[15] R.A. Mena, G.D. Sanders, K.K. Bajaj, and S.C. Dudley, Theory of
the effect of magnetic field on the excitonic photoluminescence
linewidth in semiconductor alloys, J. Appl. Phys. 70,
1866–1868 (1991),
http://dx.doi.org/10.1063/1.349509
[16] J. Singh and K.K. Bajaj, Theory of excitonic photoluminescence
linewidth in semiconductor alloys, Appl. Phys. Lett. 44,
1075–1077 (1984),
http://dx.doi.org/10.1063/1.94649
[17] L.G. Suslina, A.G. Plyuchin, O. Goede, and D. Hennig,
Compositional fluctuation-induced broadening of bound exciton lines
in II–VI semiconductor mixed crystals, Phys. Status Solidi B 94,
K185–K189 (1979),
http://dx.doi.org/10.1002/pssb.2220940267
[18] N.N. Ablyazov, M.E. Raikh, and A.L. Efros, Linewidths of
excitonic absorption in solid solutions, Fiz. Tverd. Tela
(Leningrad) [Sov. Phys. Solid State] 25, 353–358 (1983) [in
Russian]
[19] R. Brazis and J. Kossut, Role of magnetic fluctuations in the
luminescence line width of small systems, Solid State Commun. 122,
73–77 (2002),
http://dx.doi.org/10.1016/S0038-1098(02)00064-9
[20] A.A. Maksimov, G. Bacher, A. McDonald, V.D. Kulakowski, A.
Forchel, C.R. Becker, G. Landwehr, and L.W. Molenkamp, Magnetic
polarons in a single diluted magnetic semiconductor quantum dot,
Phys. Rev. B 62, R7767–R7770 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.R7767
[21] E.D. Jones, R.P. Schneider, K.K. Bajaj, and S.M. Lee, Magnetic
field dependent excitonic photoluminescence linewidth in In0.48Ga0.52P
semiconductor alloys, Phys. Rev. B 46, 7225–7228 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.7225
[22] J. Warnock, R.N. Kershaw, D. Ridgely, K. Dwight, A. Wold, and
R.R. Galazka, Localized excitons and magnetic polaron formation in
(Cd,Mn)Se and (Cd,Mn)Te, J. Lumin. 34, 25–35 (1985),
http://dx.doi.org/10.1016/0022-2313(85)90091-2
[23] D. Heiman, Y. Shapira, and S. Foner, Exchange energy,
magnetisation and Raman scattering of (Cd,Mn)Se, Phys. Rev. B 29,
5634–5640 (1984),
http://dx.doi.org/10.1103/PhysRevB.29.5634
[24] I.R. Sellers, V.R. Whiteside, A.O. Govorov, W.C. Fan, W-C.
Chou, I. Khan, A. Petrou, and B.D. McCombe, Coherent Aharonov–Bohm
oscillations in type-II (Zn,Mn)Te/ZnSe quantum dots, Phys. Rev. B 77,
241302(R) (2008),
http://dx.doi.org/10.1103/PhysRevB.77.241302
[25] M. Blume, P. Heller, and N.A. Lurie, Classical one-dimensional
Heisenberg magnet in an applied field, Phys. Rev. B 11,
4483–4497 (1975),
http://dx.doi.org/10.1103/PhysRevB.11.4483
[26] Y.H. Matsuda, T. Ikaida, N. Miura, S. Kuroda, F. Takano, and K.
Takita, Effective mass of conduction electrons in Cd1–xMnxTe,
Phys. Rev. B 65, 115202 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.115202
[27] P.M. Hui, H. Ehrenreich, and K.C. Hass, Effects of d
bands on semiconductor sp Hamiltonians, Phys. Rev. B 40,
12346–12352 (1989),
http://dx.doi.org/10.1103/PhysRevB.40.12346
[28] R.J. Keyes, S. Zwerdling, S. Foner, H. Kolm, and B. Lax,
Infrared cyclotron resonance in Bi, InSb, InAs with high pulsed
magnetic fields, Phys. Rev. 104, 1804–1805 (1956),
http://dx.doi.org/10.1103/PhysRev.104.1804
[29] Landau Level Spectroscopy, Modern problems in condensed
matter sciences, Vol. 27.1, eds. G. Landwehr and E.I. Rashba
(North-Holland, Amsterdam, 1991) p. 675,
http://www.amazon.co.uk/gp/product/0444568948
[30] R.F. Wallis, Theory of cyclotrone resonance absorption by
conduction electrons in indium antimonide, J. Phys. Chem. Solids 4,
101–110 (1958),
http://dx.doi.org/10.1016/0022-3697(58)90199-9
[31] E.O. Kane, Band structure of indium antimonide, J. Phys. Chem.
Solids 1, 249–261 (1957),
http://dx.doi.org/10.1016/0022-3697(57)90013-6
[32] V. Borsari and C. Jacoboni, Monte Carlo calculations on
electron transport in CdTe, Phys. Status Solidi B 54,
649–662 (1972),
http://dx.doi.org/10.1002/pssb.2220540229