[PDF]    http://dx.doi.org/10.3952/lithjphys.49312

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 267–275 (2009)


LUMINESCENCE OF Cd0.7Mn0.3Te CRYSTALS IN MAGNETIC FIELD: LINEWIDTH, LANDAU QUANTIZATION, AND CARRIER EFFECTIVE MASS
L. Barauskaitėa, R. Brazisa, V. Ivanovb, and M. Godlewskib
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: lb@pfi.lt
bInstitute of Physics of the Polish Academy of Sciences, Al. Lotników 32/46, 00-668 Warsaw, Poland

Received 22 April 2009; revised 20 June 2009; accepted 15 September 2009

Cd0.7Mn0.3Te crystal photoluminescence is studied in magnetic field up to 7 T in Voigt geometry at 1.6–1.7 K temperature. The range of magnetic field where the approximation of effective band gap narrowing by the s, p – d exchange-interaction-induced term correctly describes experimental results is discussed. Luminescence linewidth (FWHM) broadening due to composition disorder and magnetization fluctuations is evaluated. Functional dependence on magnetic field of magnetic part in broadening, the FWHM(B)magn., is determined. From the patterns of Landau quantization in luminescence spectra the carrier effective mass value me*m^*_{\mathrm{e}} = 0.104 is calculated and its increase in magnetic field is obtained. Contribution of nonparabolicity and band coupling effects is evaluated in the observed carrier effective mass growth effect.
Keywords: photoluminescence, linewidth (FWHM), effective mass, composition disorder fluctuations, magnetic fluctuations
PACS: 78.20.Ls, 78.55.Et, 05.40.-a


Cd0,7Mn0,3Te KRISTALŲ LIUMINESCENCIJA MAGNETINIAME LAUKE: LINIJOS PLOTIS, LANDAU KVANTAVIMAS IR KRŪVININKŲ EFEKTINĖ MASĖ

L. Barauskaitėa, R. Brazisa, V. Ivanovb, M. Godlewskib
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bLenkijos MA Fizikos institutas, Varšuva, Lenkija

Cd0,7Mn0,3Te kristalų liuminescencija tirta 1,6–1,7 K temperatūroje magnetiniame lauke iki 7 T Voigto geometrijoje. Eksperimentiniai liuminescencijos maksimumo poslinkio magnetiniame lauke rezultatai rodo, kad spindulinio šuolio energijos magnetiniame lauke galimi aprašymai (aproksimacija vien pakaitinės s, p – d sąveikos nariu arba pilnas aprašymas, atsižvelgiant į narius dėl ciklotroninio ir savitojo sukininio suskilimų) negali tiksliai apibūdinti efektyvaus draudžiamų energijų tarpo kitimo visame magnetinių laukų intervale. Pilnasis rekombinacinės energijos aprašymas (su visais nariais) tiksliai apibūdina eksperimentines energijos vertes tik silpnuose magnetiniuose laukuose B < 2 T. Tuo tarpu taikant aproksimaciją vien pakaitinės s, p – d sąveikos nariu gaunamas geras sutapimas su eksperimento rezultatais esant stipresniems magnetiniams laukams (B > 4 T). Eksperimentiškai stebimam efektyviam draudžiamų energijų tarpo siaurėjimui aprašyti reikalinga didesnė pakaitinių konstantų N0(α+β\alpha + \beta/3) vertė, kai B > 2 T. Linijos pločio (FWHM) priklausomybėje nuo magnetinio lauko įskaityti dEg/dx = f(B) ir eksitoninio tūrio Vexc(B) mažėjimo reiškiniai, kurie nežymiai platina liuminescencijos liniją. Nustatyta, kad linijos (FWHM) išplitimas dėl magnetinių fliuktuacijų magnetiniame lauke mažėja pagal eksponentinę funkciją, kurios rodiklis yra magnetinio jono sukininių fliuktuacijų jėgos vertė. Iš Landau kvantavimo liuminescencijos spektruose apskaičiuota krūvininkų efektinės masės vertė me*m^*_{\mathrm{e}} = 0,104±0,007 ir rasta, kad šis parametras magnetiniame lauke didėja netiesiškai. Įvertinus neparaboliškumo ir juostų sąveikos įtaką nustatyta, kad šie reiškiniai nepaaiškina stebimo me*m^*_{\mathrm{e}}(B) augimo magnetiniame lauke.


References / Nuorodos


[1] J.K. Furdyna, Diluted magnetic semiconductors, J. Appl. Phys. 64, R29–R64 (1988),
http://dx.doi.org/10.1063/1.341700
[2] O. Goede and W. Heimbrodt, Optical properties of (Zn,Mn) and (Cd,Mn) chalcogenide mixed crystals and superlattices, Phys. Status Solidi B 146, 11–61 (1988),
http://dx.doi.org/10.1002/pssb.2221460102
[3] N.B. Brandt and V.V. Moshchalkov, Semimagnetic semiconductors, Adv. Phys. 33, 193–255 (1984),
http://dx.doi.org/10.1080/00018738400101661
[4] J.A. Gaj, J. Ginter, and R.R. Galazka, Exchange interaction of manganese 3d5 states with band electrons in Cd1–xMnxTe, Phys. Status Solidi B 89, 655–662 (1978),
http://dx.doi.org/10.1002/pssb.2220890241
[5] R. Brazis, L. Barauskaitė, V. Ivanov, and M. Godlewski, Luminescence of Cd0.7Mn0.3Te crystals in transverse magnetic field, Acta Phys. Pol. A 109(6), 731–741 (2006),
http://przyrbwn.icm.edu.pl/APP/ABSTR/109/a109-6-6.html
[6] J.A. Gaj, R. Planel, and G. Fishman, Relation of magneto-optical properties of free excitons to spin alignement of Mn2+ ions in CdII1–xMnxTeVI , Solid State Commun. 29, 435–438 (1979),
http://dx.doi.org/10.1016/0038-1098(79)91211-0
[7] D. Heiman, P.A. Wolff, and J. Warnock, Spin-flip Raman scattering, bound magnetic polaron, and fluctuations in (Cd,Mn)Se, Phys. Rev. B 27, 4848–4860 (1983),
http://dx.doi.org/10.1103/PhysRevB.27.4848
[8] D. Heiman, Y. Shapira, and S. Foner, Spin-flip Raman scattering and magnetisation measurements on (Cd,Mn)S, Solid State Commun. 45, 899–902 (1983),
http://dx.doi.org/10.1016/0038-1098(83)90331-9
[9] I.A. Merkulov, D.R. Yakovlev, A. Keller, W. Ossau, J. Geurts, A. Waag, G. Landwehr, G. Karczewski, T. Wojtowcz, and J. Kossut, Kinetic exchange between the conduction band electrons and magnetic ions in quantum confined structures, Phys. Rev. Lett. 83, 1431–1434 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.1431
[10] E.F. Schubert, E.O. Gobel, Y. Horikoshi, K. Ploog, and H.J. Queisser, Alloy broadening in photoluminescence spectra of Al1–xGaxAs, Phys. Rev. B 30, 813–820 (1984),
http://dx.doi.org/10.1103/PhysRevB.30.813
[11] O. Goede, L. John, and D. Henning, Compositional disorder induced broadening for free excitons in II–VI semiconducting mixed crystals, Phys. Status Solidi B 89, K183–K186 (1978),
http://dx.doi.org/10.1002/pssb.2220890262
[12] K.V. Kavokin, I.A. Merkulov, D.R. Yakovlev, W. Ossau, and G. Landwehr, Exciton localization in semimagnetic semiconductors probed by magnetic polarons, Phys. Rev. B 60, 16499–16505 (1999),
http://dx.doi.org/10.1103/PhysRevB.60.16499
[13] S. Takeyama, S. Adachi, Y. Takagi, and V.F. Aguekian, Exciton localization by magnetic polarons and alloy fluctuations in the diluted magnetic semiconductor Cd1–xMnxTe, Phys. Rev. B 51, 4858–4864 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4858
[14] M. Godlewski, V.Yu. Ivanov, A. Khachapuridze, R. Narkowicz, and M.R. Phillips, Effects of localization in CdTe-based quantum well structures, Proc. SPIE 4415, 86–91 (2001),
http://dx.doi.org/10.1117/12.425475
[15] R.A. Mena, G.D. Sanders, K.K. Bajaj, and S.C. Dudley, Theory of the effect of magnetic field on the excitonic photoluminescence linewidth in semiconductor alloys, J. Appl. Phys. 70, 1866–1868 (1991),
http://dx.doi.org/10.1063/1.349509
[16] J. Singh and K.K. Bajaj, Theory of excitonic photoluminescence linewidth in semiconductor alloys, Appl. Phys. Lett. 44, 1075–1077 (1984),
http://dx.doi.org/10.1063/1.94649
[17] L.G. Suslina, A.G. Plyuchin, O. Goede, and D. Hennig, Compositional fluctuation-induced broadening of bound exciton lines in II–VI semiconductor mixed crystals, Phys. Status Solidi B 94, K185–K189 (1979),
http://dx.doi.org/10.1002/pssb.2220940267
[18] N.N. Ablyazov, M.E. Raikh, and A.L. Efros, Linewidths of excitonic absorption in solid solutions, Fiz. Tverd. Tela (Leningrad) [Sov. Phys. Solid State] 25, 353–358 (1983) [in Russian]
[19] R. Brazis and J. Kossut, Role of magnetic fluctuations in the luminescence line width of small systems, Solid State Commun. 122, 73–77 (2002),
http://dx.doi.org/10.1016/S0038-1098(02)00064-9
[20] A.A. Maksimov, G. Bacher, A. McDonald, V.D. Kulakowski, A. Forchel, C.R. Becker, G. Landwehr, and L.W. Molenkamp, Magnetic polarons in a single diluted magnetic semiconductor quantum dot, Phys. Rev. B 62, R7767–R7770 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.R7767
[21] E.D. Jones, R.P. Schneider, K.K. Bajaj, and S.M. Lee, Magnetic field dependent excitonic photoluminescence linewidth in In0.48Ga0.52P semiconductor alloys, Phys. Rev. B 46, 7225–7228 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.7225
[22] J. Warnock, R.N. Kershaw, D. Ridgely, K. Dwight, A. Wold, and R.R. Galazka, Localized excitons and magnetic polaron formation in (Cd,Mn)Se and (Cd,Mn)Te, J. Lumin. 34, 25–35 (1985),
http://dx.doi.org/10.1016/0022-2313(85)90091-2
[23] D. Heiman, Y. Shapira, and S. Foner, Exchange energy, magnetisation and Raman scattering of (Cd,Mn)Se, Phys. Rev. B 29, 5634–5640 (1984),
http://dx.doi.org/10.1103/PhysRevB.29.5634
[24] I.R. Sellers, V.R. Whiteside, A.O. Govorov, W.C. Fan, W-C. Chou, I. Khan, A. Petrou, and B.D. McCombe, Coherent Aharonov–Bohm oscillations in type-II (Zn,Mn)Te/ZnSe quantum dots, Phys. Rev. B 77, 241302(R) (2008),
http://dx.doi.org/10.1103/PhysRevB.77.241302
[25] M. Blume, P. Heller, and N.A. Lurie, Classical one-dimensional Heisenberg magnet in an applied field, Phys. Rev. B 11, 4483–4497 (1975),
http://dx.doi.org/10.1103/PhysRevB.11.4483
[26] Y.H. Matsuda, T. Ikaida, N. Miura, S. Kuroda, F. Takano, and K. Takita, Effective mass of conduction electrons in Cd1–xMnxTe, Phys. Rev. B 65, 115202 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.115202
[27] P.M. Hui, H. Ehrenreich, and K.C. Hass, Effects of d bands on semiconductor sp Hamiltonians, Phys. Rev. B 40, 12346–12352 (1989),
http://dx.doi.org/10.1103/PhysRevB.40.12346
[28] R.J. Keyes, S. Zwerdling, S. Foner, H. Kolm, and B. Lax, Infrared cyclotron resonance in Bi, InSb, InAs with high pulsed magnetic fields, Phys. Rev. 104, 1804–1805 (1956),
http://dx.doi.org/10.1103/PhysRev.104.1804
[29] Landau Level Spectroscopy, Modern problems in condensed matter sciences, Vol. 27.1, eds. G. Landwehr and E.I. Rashba (North-Holland, Amsterdam, 1991) p. 675,
http://www.amazon.co.uk/gp/product/0444568948
[30] R.F. Wallis, Theory of cyclotrone resonance absorption by conduction electrons in indium antimonide, J. Phys. Chem. Solids 4, 101–110 (1958),
http://dx.doi.org/10.1016/0022-3697(58)90199-9
[31] E.O. Kane, Band structure of indium antimonide, J. Phys. Chem. Solids 1, 249–261 (1957),
http://dx.doi.org/10.1016/0022-3697(57)90013-6
[32] V. Borsari and C. Jacoboni, Monte Carlo calculations on electron transport in CdTe, Phys. Status Solidi B 54, 649–662 (1972),
http://dx.doi.org/10.1002/pssb.2220540229