[PDF]    http://dx.doi.org/10.3952/lithjphys.49401

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 421–431 (2009)


GENERATION AND AMPLIFICATION OF ULTRASHORT UV PULSES VIA PARAMETRIC FOUR-WAVE INTERACTIONS IN TRANSPARENT SOLID-STATE MEDIA
A. Dubietis, J. Darginavičius, G. Tamoššauskas, G. Valiulis, and A. Piskarskas
Department of Quantum Electronics, Vilnius University, Saulėtekio 9 bldg. 3, LT-10222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt

Received 15 June 2009; accepted 18 December 2009

We report on efficient generation of the ultrashort ultraviolet light pulses by means of phase-matched four-wave optical parametric amplification and four-wave difference frequency mixing in UV-transparent solids with cubic nonlinearity. Broadband four-wave optical parametric amplification around 330 nm is investigated theoretically and demonstrated experimentally in optically isotropic materials, such as fused silica and CaF2 crystals. The results suggest that powerful broadband ultraviolet pulses as short as 7.5 fs (in the transform limit) could be amplied in the field of milijoule 1-ps visible pulses. Efficient generation of 1-ps pulses at the 3rd (351 nm), 5th (211 nm), and, in particular, 6th (176 nm) harmonics of the Nd:glass laser is experimentally demonstrated through non-collinearly phase-matched four-wave difference-frequency mixing in fused silica, CaF2 and MgF2 crystals.
Keywords: four-wave mixing, optical parametric amplification
PACS: 42.65.Jx, 42.25.Tg, 42.65.Yj, 42.65.Hw


ULTRATRUMPŲJŲ UV IMPULSŲ GENERAVIMAS IR STIPRINIMAS KETURBANGE PARAMETRINE SĄVEIKA SKAIDRIOSE KIETAKŪNĖSE TERPĖSE
A. Dubietis, J. Darginavičius, G. Tamoššauskas, G. Valiulis, A. Piskarskas
Vilniaus universitetas, Vilnius, Lietuva

Ištirtas efektyvus ultratrumpųjų ultravioletinių šviesos impulsų generavimas, naudojant faziškai sinchroninį keturbangį parametrinį šviesos stiprinimą ir keturbangį skirtuminio dažnio maišymą skaidriose kieto kūno terpėse su kubiniu netiesiškumu. Teoriškai ištirtas ir eksperimentiškai pademonstruotas plataus spektro impulsų parametrinis stiprinimas ties 330 nm bangos ilgiu izotropinėse terpėse – lydyto kvarco ir CaF2 kristaluose. Pasiekti rezultatai leidžia tikėtis, kad tokiu metodu gali būti stiprinami itin mažos trukmės (7,5 fs) ultravioletiniai šviesos impulsai, kaupinant 1 ps trukmės regimosios šviesos impulsais su milidžauline energija. Taikant keturbangį skirtuminio dažnio generavimo metodą, eksperimentiškai gautas efektyvus Nd:stiklo lazerio trečiosios (351 nm), penktosios (211 nm) ir šeštosios (176 nm) harmonikų žadinimas lydyto kvarco, CaF2 ir MgF2 kristaluose.


References / Nuorodos


[1] I.V. Hertel and V. Radloff, Ultrafast dynamics in isolated molecules and molecular clusters, Rep. Prog. Phys. 69, 1897–2003 (2006),
http://dx.doi.org/10.1088/0034-4885/69/6/R06
[2] J.H. Klein-Wiele, J. Bekesi, and P. Simon, Sub-micron patterning of solid materials with ultraviolet femtosecond pulses, Appl. Phys. A 79, 775–778 (2004),
http://dx.doi.org/10.1007/s00339-004-2589-y
[3] I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kaspetaki, and D. Kefetzopoulos, Femtosecond laser microprinting of biomaterials, Appl. Phys. Lett. 86, 163902 (2005),
http://dx.doi.org/10.1063/1.1906325
[4] A.I. Kalachev, D.N. Nikogosyan, and G. Brambilla, Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211 nm, J. Lightwave Technol. 23, 2568–2578 (2005),
http://dx.doi.org/10.1109/JLT.2005.851335
[5] I. Zergioti, K.D. Kyrkis, D.G. Papazoglou, and S. Tzortzakis, Structural modications in fused silica induced by ultraviolet fs laser filaments, Appl. Surf. Sci. 253, 7865–7868 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.02.095
[6] V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties, Appl. Opt. 47, 1846–1850 (2008),
http://dx.doi.org/10.1364/AO.47.001846
[7] S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M.M. Murnane, and H.C. Kapteyn, 16-fs, 1-μJ ultraviolet pulses generated by third-harmonic conversion in air, Opt. Lett. 21, 665–667 (1996),
http://dx.doi.org/10.1364/OL.21.000665
[8] C.G. Durfee III, S. Backus, M.M. Murnane, and H.C. Kapteyn, Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves, Opt. Lett. 22, 1565–1567 (1997),
http://dx.doi.org/10.1364/OL.22.001565
[9] C.G. Durfee III, S. Backus, H.C. Kapteyn, and M.M. Murnane, Intense 8-fs pulse generation in the deep ultraviolet, Opt. Lett. 24, 697–699 (1999),
http://dx.doi.org/10.1364/OL.24.000697
[10] L. Misoguti, S. Backus, C.G. Durfee, R. Bartels, M.M. Murnane, and H.C. Kapteyn, Generation of broadband VUV light using third-order cascaded processes, Phys. Rev. Lett. 87, 013601 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.013601
[11] A.E. Jailaubekov and S.E. Bradforth, Tunable 30-femtosecond pulses across the deep ultraviolet, Appl. Phys. Lett. 87, 021107 (2005),
http://dx.doi.org/10.1063/1.1992655
[12] T. Fuji, T. Horyo, and T. Suzuki, Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas, Opt. Lett. 32, 2481–2483 (2007),
http://dx.doi.org/10.1364/OL.32.002481
[13] K. Kosma, S.A. Trushin, W.E. Schmid, and W. Fuss, Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser, Opt. Lett. 33, 723–725 (2008),
http://dx.doi.org/10.1364/OL.33.000723
[14] L. Bergé and S. Skupin, Sub-2 fs pulses generated by self-channeling in the deep ultraviolet, Opt. Lett. 33, 750–752 (2008),
http://dx.doi.org/10.1364/OL.33.000750
[15] U. Graf, M. Fiess, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, Intense few-cycle light pulses in the deep ultraviolet, Opt. Express 16, 18956–18963 (2008),
http://dx.doi.org/10.1364/OE.16.018956
[16] H. Okamoto and M. Tatsumi, Generation of ultrashort light pulses in the mid-infrared (3000–800 cm-1) by four-wave mixing, Opt. Commun. 121, 63–68 (1995),
http://dx.doi.org/10.1016/0030-4018(95)00519-E
[17] H. Crespo, J.T. Mendonça, and A. Dos Santos, Cascaded highly nondegenerate four-wave-mixing phenomenon in transparent isotropic condensed media, Opt. Lett. 25, 829–831 (2000),
http://dx.doi.org/10.1364/OL.25.000829
[18] H.-K. Nienhuys, P.C.M. Planken, R.A. van Santen, and H.J. Bakker, Generation of mid-infrared pulses by χ(3) difference frequency generation in CaF2 and BaF2, Opt. Lett. 26, 1350–1352 (2001),
http://dx.doi.org/10.1364/OL.26.001350
[19] R.V. Volkov, D.V. Khakhulin, and A.B. Savel`ev, Four-wave parametric conversion of femtosecond laser pulse in a filament induced in a solid target, Opt. Lett. 33, 666–668 (2008),
http://dx.doi.org/10.1364/OL.33.000666
[20] J. Liu and T. Kobayashi, Cascaded four-wave mixing and multicolored arrays generation in a sapphire plate by using two crossing beams of femtosecond laser, Opt. Express 16, 22119–22125 (2008),
http://dx.doi.org/10.1364/OE.16.022119
[21] P.S. Banks, M.D. Feit, and M.D. Perry, High-intensity third-harmonic generation in beta barium borate through second-order and third-order susceptibilities, Opt. Lett. 24, 4–6 (1999),
http://dx.doi.org/10.1364/OL.24.000004
[22] J.-P. Fève, B. Boulanger, and Y. Guillien, Efficient energy conversion for cubic third-harmonic generation that is phase matched in KTiOPO4, Opt. Lett. 25, 1373–1375 (2000),
http://dx.doi.org/10.1364/OL.25.001373
[23] T. Schneider, R.P. Schmid, and J. Reif, Efficient self phase matched third harmonic generation of ultrashort pulses in a material with positive dispersion, Appl. Phys. B 72, 563–565 (2001),
http://dx.doi.org/10.1007/s003400100510
[24] A. Penzkofer, J. Kraus, and J. Sperka, Noncollinear phase matched four photon frequency mixing in water, Opt. Commun. 37, 437–441 (1981),
http://dx.doi.org/10.1016/0030-4018(81)90137-1
[25] G. Mao, Y. Wu, and K.D. Singer, Third harmonic generation in self-focused filaments in liquids, Opt. Express 15, 4857–4862 (2007),
http://dx.doi.org/10.1364/OE.15.004857
[26] A. Dubietis, G. Tamošauskas, P. Polesana, G. Valiulis, H. Valtna, D. Faccio, P. Di Trapani, and A. Piskarskas, Highly efficient four-wave parametric amplification in transparent bulk Kerr medium, Opt. Express 15, 11126-–11132 (2007),
http://dx.doi.org/10.1364/OE.15.011126
[27] H. Valtna, A. Dubietis, G. Tamošauskas, P. Polesana, J. Galinis, D. Majus, G. Valiulis, D. Faccio, P. Di Trapani, and A. Piskarskas, Efficient four-wave parametric amplification and spatial soliton generation in transparent isotropic medium with Kerr nonlinearity, Lithuanian J. Phys. 47, 403–410 (2007),
http://dx.doi.org/10.3952/lithjphys.47405
[28] H. Valtna, A. Dubietis, G. Tamošauskas, and A. Piskarskas, High-energy broadband four-wave optical parametric amplification in bulk fused silica, Opt. Lett. 33, 971–973 (2008),
http://dx.doi.org/10.1364/OL.33.000971
[29] J. Darginavičius, G. Tamošauskas, G. Valiulis, and A. Dubietis, Broadband four-wave optical parametric amplification in bulk isotropic media in the ultraviolet, Opt. Commun. 282, 2995–2999 (2009),
http://dx.doi.org/10.1016/j.optcom.2009.04.031
[30] J. Darginavičius, D. Majus, G. Tamošauskas, and A. Dubietis, Highly efficient third harmonic generation by means of four-wave difference-frequency mixing in fused silica, Lithuanian J. Phys. 49, 171–174 (2009),
http://dx.doi.org/10.3952/lithjphys.49203
[31] A. Penzkofer and H.J. Lehmeier, Theoretical investigation of noncollinear phase-matched parametric four-photon amplification of ultrashort light pulses in isotropic media, Opt. Quantum Electron. 25, 815–844 (1993),
http://dx.doi.org/10.1007/BF00430189
[32] B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, and M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Phys. Rev. B 53, 1749–1761 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.1749
[33] A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis, Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm, Appl. Opt. 39, 2437–2440 (2000),
http://dx.doi.org/10.1364/AO.39.002437
[34] D.N. Nikogosyan, Properties of Optical and Laser-Related Materials (John Wiley & Sons, Chichester, 1997),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047197384X.html
[35] Handbook of Optics, eds. M. Bass, E.W. Van Stryland, D.R. Williams, and W.L. Wolfe, 2nd ed. (McGraw–Hill Professional, New York, 1994)
[36] F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate, Opt. Lett. 19, 1538–1540 (1994),
http://dx.doi.org/10.1364/OL.19.001538
[37] V. Petrov, F. Noack, F. Rotermund, M. Tanaka, and Y. Okada, Sum-frequency generation of femtosecond pulses in CsLiB6O10 down to 175 nm, Appl. Opt. 39, 5076–5079 (2000),
http://dx.doi.org/10.1364/AO.39.005076
[38] V. Petrov, F. Rotermund, and F. Noack, Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8⋅4H2O, Electron. Lett. 34, 1748–1750 (1998),
http://dx.doi.org/10.1049/el:19981223