[PDF]
http://dx.doi.org/10.3952/lithjphys.49401
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 421–431 (2009)
GENERATION AND AMPLIFICATION OF
ULTRASHORT UV PULSES VIA PARAMETRIC FOUR-WAVE INTERACTIONS IN
TRANSPARENT SOLID-STATE MEDIA
A. Dubietis, J. Darginavičius, G. Tamošauskas, G. Valiulis, and
A. Piskarskas
Department of Quantum Electronics, Vilnius University,
Saulėtekio 9 bldg. 3, LT-10222 Vilnius, Lithuania
E-mail: audrius.dubietis@ff.vu.lt
Received 15 June 2009; accepted 18
December 2009
We report on efficient generation
of the ultrashort ultraviolet light pulses by means of
phase-matched four-wave optical parametric amplification and
four-wave difference frequency mixing in UV-transparent solids
with cubic nonlinearity. Broadband four-wave optical parametric
amplification around 330 nm is investigated theoretically and
demonstrated experimentally in optically isotropic materials, such
as fused silica and CaF2 crystals. The results suggest
that powerful broadband ultraviolet pulses as short as 7.5 fs (in
the transform limit) could be amplied in the field of milijoule
1-ps visible pulses. Efficient generation of 1-ps pulses at the
3rd (351 nm), 5th (211 nm), and, in particular, 6th (176 nm)
harmonics of the Nd:glass laser is experimentally demonstrated
through non-collinearly phase-matched four-wave
difference-frequency mixing in fused silica, CaF2 and
MgF2 crystals.
Keywords: four-wave mixing, optical
parametric amplification
PACS: 42.65.Jx, 42.25.Tg, 42.65.Yj, 42.65.Hw
ULTRATRUMPŲJŲ UV IMPULSŲ
GENERAVIMAS IR STIPRINIMAS KETURBANGE PARAMETRINE SĄVEIKA
SKAIDRIOSE KIETAKŪNĖSE TERPĖSE
A. Dubietis, J. Darginavičius, G. Tamošauskas, G. Valiulis, A.
Piskarskas
Vilniaus universitetas, Vilnius, Lietuva
Ištirtas efektyvus ultratrumpųjų
ultravioletinių šviesos impulsų generavimas, naudojant faziškai
sinchroninį keturbangį parametrinį šviesos stiprinimą ir
keturbangį skirtuminio dažnio maišymą skaidriose kieto kūno
terpėse su kubiniu netiesiškumu. Teoriškai ištirtas ir
eksperimentiškai pademonstruotas plataus spektro impulsų
parametrinis stiprinimas ties 330 nm bangos ilgiu izotropinėse
terpėse – lydyto kvarco ir CaF2 kristaluose. Pasiekti
rezultatai leidžia tikėtis, kad tokiu metodu gali būti stiprinami
itin mažos trukmės (7,5 fs) ultravioletiniai šviesos impulsai,
kaupinant 1 ps trukmės regimosios šviesos impulsais su
milidžauline energija. Taikant keturbangį skirtuminio dažnio
generavimo metodą, eksperimentiškai gautas efektyvus Nd:stiklo
lazerio trečiosios (351 nm), penktosios (211 nm) ir šeštosios (176
nm) harmonikų žadinimas lydyto kvarco, CaF2 ir MgF2
kristaluose.
References / Nuorodos
[1] I.V. Hertel and V. Radloff, Ultrafast dynamics in isolated
molecules and molecular clusters, Rep. Prog. Phys. 69,
1897–2003 (2006),
http://dx.doi.org/10.1088/0034-4885/69/6/R06
[2] J.H. Klein-Wiele, J. Bekesi, and P. Simon, Sub-micron patterning
of solid materials with ultraviolet femtosecond pulses, Appl. Phys.
A 79, 775–778 (2004),
http://dx.doi.org/10.1007/s00339-004-2589-y
[3] I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M.
Kaspetaki, and D. Kefetzopoulos, Femtosecond laser microprinting of
biomaterials, Appl. Phys. Lett. 86, 163902 (2005),
http://dx.doi.org/10.1063/1.1906325
[4] A.I. Kalachev, D.N. Nikogosyan, and G. Brambilla, Long-period
fiber grating fabrication by high-intensity femtosecond pulses at
211 nm, J. Lightwave Technol. 23, 2568–2578 (2005),
http://dx.doi.org/10.1109/JLT.2005.851335
[5] I. Zergioti, K.D. Kyrkis, D.G. Papazoglou, and S. Tzortzakis,
Structural modications in fused silica induced by ultraviolet fs
laser filaments, Appl. Surf. Sci. 253, 7865–7868 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.02.095
[6] V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, Ultraviolet
femtosecond, picosecond and nanosecond laser microstructuring of
silicon: structural and optical properties, Appl. Opt. 47,
1846–1850 (2008),
http://dx.doi.org/10.1364/AO.47.001846
[7] S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M.M.
Murnane, and H.C. Kapteyn, 16-fs, 1-μJ ultraviolet pulses
generated by third-harmonic conversion in air, Opt. Lett. 21,
665–667 (1996),
http://dx.doi.org/10.1364/OL.21.000665
[8] C.G. Durfee III, S. Backus, M.M. Murnane, and H.C. Kapteyn,
Ultrabroadband phase-matched optical parametric generation in the
ultraviolet by use of guided waves, Opt. Lett. 22, 1565–1567
(1997),
http://dx.doi.org/10.1364/OL.22.001565
[9] C.G. Durfee III, S. Backus, H.C. Kapteyn, and M.M. Murnane,
Intense 8-fs pulse generation in the deep ultraviolet, Opt. Lett. 24,
697–699 (1999),
http://dx.doi.org/10.1364/OL.24.000697
[10] L. Misoguti, S. Backus, C.G. Durfee, R. Bartels, M.M. Murnane,
and H.C. Kapteyn, Generation of broadband VUV light using
third-order cascaded processes, Phys. Rev. Lett. 87, 013601
(2001),
http://dx.doi.org/10.1103/PhysRevLett.87.013601
[11] A.E. Jailaubekov and S.E. Bradforth, Tunable 30-femtosecond
pulses across the deep ultraviolet, Appl. Phys. Lett. 87,
021107 (2005),
http://dx.doi.org/10.1063/1.1992655
[12] T. Fuji, T. Horyo, and T. Suzuki, Generation of 12 fs
deep-ultraviolet pulses by four-wave mixing through filamentation in
neon gas, Opt. Lett. 32, 2481–2483 (2007),
http://dx.doi.org/10.1364/OL.32.002481
[13] K. Kosma, S.A. Trushin, W.E. Schmid, and W. Fuss, Vacuum
ultraviolet pulses of 11 fs from fifth-harmonic generation of a
Ti:sapphire laser, Opt. Lett. 33, 723–725 (2008),
http://dx.doi.org/10.1364/OL.33.000723
[14] L. Bergé and S. Skupin, Sub-2 fs pulses generated by
self-channeling in the deep ultraviolet, Opt. Lett. 33,
750–752 (2008),
http://dx.doi.org/10.1364/OL.33.000750
[15] U. Graf, M. Fiess, M. Schultze, R. Kienberger, F. Krausz, and
E. Goulielmakis, Intense few-cycle light pulses in the deep
ultraviolet, Opt. Express 16, 18956–18963 (2008),
http://dx.doi.org/10.1364/OE.16.018956
[16] H. Okamoto and M. Tatsumi, Generation of ultrashort light
pulses in the mid-infrared (3000–800 cm-1) by four-wave
mixing, Opt. Commun. 121, 63–68 (1995),
http://dx.doi.org/10.1016/0030-4018(95)00519-E
[17] H. Crespo, J.T. Mendonça, and A. Dos Santos, Cascaded highly
nondegenerate four-wave-mixing phenomenon in transparent isotropic
condensed media, Opt. Lett. 25, 829–831 (2000),
http://dx.doi.org/10.1364/OL.25.000829
[18] H.-K. Nienhuys, P.C.M. Planken, R.A. van Santen, and H.J.
Bakker, Generation of mid-infrared pulses by χ(3)
difference frequency generation in CaF2 and BaF2,
Opt. Lett. 26, 1350–1352 (2001),
http://dx.doi.org/10.1364/OL.26.001350
[19] R.V. Volkov, D.V. Khakhulin, and A.B. Savel`ev, Four-wave
parametric conversion of femtosecond laser pulse in a filament
induced in a solid target, Opt. Lett. 33, 666–668 (2008),
http://dx.doi.org/10.1364/OL.33.000666
[20] J. Liu and T. Kobayashi, Cascaded four-wave mixing and
multicolored arrays generation in a sapphire plate by using two
crossing beams of femtosecond laser, Opt. Express 16,
22119–22125 (2008),
http://dx.doi.org/10.1364/OE.16.022119
[21] P.S. Banks, M.D. Feit, and M.D. Perry, High-intensity
third-harmonic generation in beta barium borate through second-order
and third-order susceptibilities, Opt. Lett. 24, 4–6 (1999),
http://dx.doi.org/10.1364/OL.24.000004
[22] J.-P. Fève, B. Boulanger, and Y. Guillien, Efficient energy
conversion for cubic third-harmonic generation that is phase matched
in KTiOPO4, Opt. Lett. 25, 1373–1375 (2000),
http://dx.doi.org/10.1364/OL.25.001373
[23] T. Schneider, R.P. Schmid, and J. Reif, Efficient self phase
matched third harmonic generation of ultrashort pulses in a material
with positive dispersion, Appl. Phys. B 72, 563–565 (2001),
http://dx.doi.org/10.1007/s003400100510
[24] A. Penzkofer, J. Kraus, and J. Sperka, Noncollinear phase
matched four photon frequency mixing in water, Opt. Commun. 37,
437–441 (1981),
http://dx.doi.org/10.1016/0030-4018(81)90137-1
[25] G. Mao, Y. Wu, and K.D. Singer, Third harmonic generation in
self-focused filaments in liquids, Opt. Express 15,
4857–4862 (2007),
http://dx.doi.org/10.1364/OE.15.004857
[26] A. Dubietis, G. Tamošauskas, P. Polesana, G. Valiulis, H.
Valtna, D. Faccio, P. Di Trapani, and A. Piskarskas, Highly
efficient four-wave parametric amplification in transparent bulk
Kerr medium, Opt. Express 15, 11126-–11132 (2007),
http://dx.doi.org/10.1364/OE.15.011126
[27] H. Valtna, A. Dubietis, G. Tamošauskas, P. Polesana, J.
Galinis, D. Majus, G. Valiulis, D. Faccio, P. Di Trapani, and A.
Piskarskas, Efficient four-wave parametric amplification and spatial
soliton generation in transparent isotropic medium with Kerr
nonlinearity, Lithuanian J. Phys. 47, 403–410 (2007),
http://dx.doi.org/10.3952/lithjphys.47405
[28] H. Valtna, A. Dubietis, G. Tamošauskas, and A. Piskarskas,
High-energy broadband four-wave optical parametric amplification in
bulk fused silica, Opt. Lett. 33, 971–973 (2008),
http://dx.doi.org/10.1364/OL.33.000971
[29] J. Darginavičius, G. Tamošauskas, G. Valiulis, and A. Dubietis,
Broadband four-wave optical parametric amplification in bulk
isotropic media in the ultraviolet, Opt. Commun. 282,
2995–2999 (2009),
http://dx.doi.org/10.1016/j.optcom.2009.04.031
[30] J. Darginavičius, D. Majus, G. Tamošauskas, and A. Dubietis,
Highly efficient third harmonic generation by means of four-wave
difference-frequency mixing in fused silica, Lithuanian J. Phys. 49,
171–174 (2009),
http://dx.doi.org/10.3952/lithjphys.49203
[31] A. Penzkofer and H.J. Lehmeier, Theoretical investigation of
noncollinear phase-matched parametric four-photon amplification of
ultrashort light pulses in isotropic media, Opt. Quantum Electron. 25,
815–844 (1993),
http://dx.doi.org/10.1007/BF00430189
[32] B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore,
and M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in
dielectrics, Phys. Rev. B 53, 1749–1761 (1996),
http://dx.doi.org/10.1103/PhysRevB.53.1749
[33] A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis,
Two-photon absorbing properties of ultraviolet phase-matchable
crystals at 264 and 211 nm, Appl. Opt. 39, 2437–2440 (2000),
http://dx.doi.org/10.1364/AO.39.002437
[34] D.N. Nikogosyan, Properties of Optical and Laser-Related
Materials (John Wiley & Sons, Chichester, 1997),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047197384X.html
[35] Handbook of Optics, eds. M. Bass, E.W. Van Stryland,
D.R. Williams, and W.L. Wolfe, 2nd ed. (McGraw–Hill Professional,
New York, 1994)
[36] F. Seifert, J. Ringling, F. Noack, V. Petrov, and O.
Kittelmann, Generation of tunable femtosecond pulses to as low as
172.7 nm by sum-frequency mixing in lithium triborate, Opt. Lett. 19,
1538–1540 (1994),
http://dx.doi.org/10.1364/OL.19.001538
[37] V. Petrov, F. Noack, F. Rotermund, M. Tanaka, and Y. Okada,
Sum-frequency generation of femtosecond pulses in CsLiB6O10
down to 175 nm, Appl. Opt. 39, 5076–5079 (2000),
http://dx.doi.org/10.1364/AO.39.005076
[38] V. Petrov, F. Rotermund, and F. Noack, Generation of
femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8⋅4H2O,
Electron. Lett. 34, 1748–1750 (1998),
http://dx.doi.org/10.1049/el:19981223