[PDF]    http://dx.doi.org/10.3952/lithjphys.49402

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 373–381 (2009)


APPROXIMATE DESCRIPTION OF DECAYING QUASI-STATIONARY STATE
A. Matulisa and G. Kiršanskasb
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: amatulis@takas.lt
bDepartment of Theoretical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania

Received 9 July 2009; revised 22 September 2009; accepted 18 December 2009

A simple model of the decaying quantum state composed of a one-dimensional electron moving in the potential with the quantum dot separated from the innite half-axis by the δδ-function is studied. The quasibound quantum dot state properties calculated by means of approximate methods (complex energy technique and local density of states method) are compared with results obtained with the aid of an exact analytical non-stationary wave function. The physical meaning of the emitted electron wave function peculiarities is discussed.
Keywords: quasi-bound state, decay, lifetime, local density of states
PACS: 03.65.-w, 73.21.La


ARTUTINIS SKYLANČIOS KVAZISTACIONARIOSIOS BŪSENOS APRAŠYMAS
A. Matulisa, G. Kiršanskasb
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva

Nagrinėjamas paprastas skylančios kvantinės būsenos modelis, kuriame vienmatis elektronas juda potenciale, susidedančiame iš Dirako smaile atskirto kvantinio taško nuo begalinės teigiamos x pusašės. Kvantinio taško charakteristikos (kvazistacionaraus lygmens energija bei gyvavimo trukmė) ir išspinduliuoto elektrono banginė funkcija, apskaičiuoti artutiniais kompleksinės energijos bei lokalaus lygmenų tankio metodais, palyginami su tiksliu analiziniu sprendiniu, išreikštu kontūriniu integralu kompleksinėje elektrono impulso plokštumoje. Aptariamos fizikinės išspinduliuoto elektrono banginės funkcijos ypatumų priežastys.


References / Nuorodos


[1] T. Chakraborty, Quantum Dots (Elsevier, Amsterdam, 1999),
http://dx.doi.org/10.1016/b978-044450258-2/50003-1
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature (London) 438, 197 (2005),
http://dx.doi.org/10.1038/nature04233
[3] Y. Zang, Y.W. Tan, H.L. Stormer, and P. Kim, Nature (London) 438, 201 (2005),
http://dx.doi.org/10.1038/nature04235
[4] M.I. Katsnelson, K.S. Novoselov, and A.K. Geim, Nature Phys. 2, 620 (2006),
http://dx.doi.org/10.1038/nphys384
[5] P. Hawageegana and V. Apalkov, Phys. Rev. B 77, 245426 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.245426
[6] M.L. Goldberger and K.M. Watson, Collision Theory (Wiley, New York, 1964),
http://www.amazon.co.uk/Collision-Theory-M-Watson-Goldberger/dp/B001103MGM/
[7] A. Matulis and F.M. Peeters, Phys. Rev. 77, 115423 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.115423
[8] M.R. Masir, A. Matulis, and F.M. Peeters, Phys. Rev. 79, 155451 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.155451
[9] Hong-Yi Chen, V. Apalkov, and T. Chakraborty, Phys. Rev. Lett. 98, 186803 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.186803
[10a] J. Petzold, Z. Phys. 155, 422 (1959),
http://dx.doi.org/10.1007/BF01333122
[10b] R.G. Winter, Phys. Rev. 123, 1503 (1961),
http://dx.doi.org/10.1103/PhysRev.123.1503
[11] W. van Dijk, F. Kataoka, and Y. Nogami, J. Phys. A 32, 6347 (1999),
http://dx.doi.org/10.1088/0305-4470/32/35/311
[12] W. van Dijk and Y. Nogami, Phys. Rev. Lett. 83, 2867 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.2867
[13] W. van Dijk and Y. Nogami, Phys. Rev. C 65, 024608 (2002),
http://dx.doi.org/10.1103/PhysRevC.65.024608
[14] G. García-Calderón, J.L. Mateos, and M. Moshinsky, Phys. Rev. Lett. 74, 337 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.337
[15] A. Sommerfeld, Partial Differential Equations in Physics: Lectures on Theoretical Physics, vol. 6 (Academic Press, 1964),
http://www.amazon.co.uk/Partial-Differential-Equations-Physics-Theoretical/dp/0126546584/