[PDF]
http://dx.doi.org/10.3952/lithjphys.49402
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 373–381 (2009)
APPROXIMATE DESCRIPTION OF
DECAYING QUASI-STATIONARY STATE
A. Matulisa and G. Kiršanskasb
aSemiconductor Physics Institute, A. Gotauto 11,
LT-01108 Vilnius, Lithuania
E-mail: amatulis@takas.lt
bDepartment of Theoretical Physics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
Received 9 July 2009; revised 22
September 2009; accepted 18 December 2009
A simple model of the decaying
quantum state composed of a one-dimensional electron moving in the
potential with the quantum dot separated from the innite
half-axis by the
-function is
studied. The quasibound quantum dot state properties calculated by
means of approximate methods (complex energy technique and local
density of states method) are compared with results obtained with
the aid of an exact analytical non-stationary wave function. The
physical meaning of the emitted electron wave function
peculiarities is discussed.
Keywords: quasi-bound state, decay,
lifetime, local density of states
PACS: 03.65.-w, 73.21.La
ARTUTINIS SKYLANČIOS
KVAZISTACIONARIOSIOS BŪSENOS APRAŠYMAS
A. Matulisa, G. Kiršanskasb
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
Nagrinėjamas paprastas skylančios kvantinės
būsenos modelis, kuriame vienmatis elektronas juda potenciale,
susidedančiame iš Dirako smaile atskirto kvantinio taško nuo
begalinės teigiamos x pusašės. Kvantinio taško
charakteristikos (kvazistacionaraus lygmens energija bei gyvavimo
trukmė) ir išspinduliuoto elektrono banginė funkcija, apskaičiuoti
artutiniais kompleksinės energijos bei lokalaus lygmenų tankio
metodais, palyginami su tiksliu analiziniu sprendiniu, išreikštu
kontūriniu integralu kompleksinėje elektrono impulso plokštumoje.
Aptariamos fizikinės išspinduliuoto elektrono banginės funkcijos
ypatumų priežastys.
References / Nuorodos
[1] T. Chakraborty, Quantum Dots (Elsevier, Amsterdam,
1999),
http://dx.doi.org/10.1016/b978-044450258-2/50003-1
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I.
Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature
(London) 438, 197 (2005),
http://dx.doi.org/10.1038/nature04233
[3] Y. Zang, Y.W. Tan, H.L. Stormer, and P. Kim, Nature (London) 438,
201 (2005),
http://dx.doi.org/10.1038/nature04235
[4] M.I. Katsnelson, K.S. Novoselov, and A.K. Geim, Nature Phys. 2,
620 (2006),
http://dx.doi.org/10.1038/nphys384
[5] P. Hawageegana and V. Apalkov, Phys. Rev. B 77, 245426 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.245426
[6] M.L. Goldberger and K.M. Watson, Collision Theory
(Wiley, New York, 1964),
http://www.amazon.co.uk/Collision-Theory-M-Watson-Goldberger/dp/B001103MGM/
[7] A. Matulis and F.M. Peeters, Phys. Rev. 77, 115423
(2008),
http://dx.doi.org/10.1103/PhysRevB.77.115423
[8] M.R. Masir, A. Matulis, and F.M. Peeters, Phys. Rev. 79,
155451 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.155451
[9] Hong-Yi Chen, V. Apalkov, and T. Chakraborty, Phys. Rev. Lett. 98,
186803 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.186803
[10a] J. Petzold, Z. Phys. 155, 422 (1959),
http://dx.doi.org/10.1007/BF01333122
[10b] R.G. Winter, Phys. Rev. 123, 1503 (1961),
http://dx.doi.org/10.1103/PhysRev.123.1503
[11] W. van Dijk, F. Kataoka, and Y. Nogami, J. Phys. A 32,
6347 (1999),
http://dx.doi.org/10.1088/0305-4470/32/35/311
[12] W. van Dijk and Y. Nogami, Phys. Rev. Lett. 83, 2867
(1999),
http://dx.doi.org/10.1103/PhysRevLett.83.2867
[13] W. van Dijk and Y. Nogami, Phys. Rev. C 65, 024608
(2002),
http://dx.doi.org/10.1103/PhysRevC.65.024608
[14] G. García-Calderón, J.L. Mateos, and M. Moshinsky, Phys. Rev.
Lett. 74, 337 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.337
[15] A. Sommerfeld, Partial Differential Equations in Physics:
Lectures on Theoretical Physics, vol. 6 (Academic Press,
1964),
http://www.amazon.co.uk/Partial-Differential-Equations-Physics-Theoretical/dp/0126546584/