[PDF]
http://dx.doi.org/10.3952/lithjphys.49403
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 389–402 (2009)
ADDITION OF NUCLEOPHILE TO BENT
BONDS OF THE CARBONYL GROUP
V. Gineitytė
Institute of Theoretical Physics and Astronomy of Vilnius
University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: gineityte@itpa.lt
Received 26 February 2009; revised
27 October 2009; accepted 18 December 2009
Bimolecular nucleophilic addition
(Ad
N2) reactions of carbonyl compounds are modelled and
studied using the semilocalized approach to chemical reactivity
suggested previously. The approach consists in the direct
obtaining of the one-electron density matrix of the whole reacting
system in the form of a power series in the basis of orbitals
localized on separate bonds. The double C=O bond is represented by
two equivalent bent bonds, one of them being under attack of a
nucleophile. The results support the previous hypothesis about an
increasing polarity of the C=O bond under the influence of an
external cation attached to a lone electron pair of the oxygen
atom and yield a new interpretation of this effect in terms of
interorbital interactions. Coordination of the oxygen atom by a
subsidiary cation is shown to ensure also an increase of charge
transfer from nucleophile to the reacting C
–O bond at later
stages of the process. These results serve to account for the
known catalytic effect of acids in Ad
N2 reactions.
Effects of substituents of various types upon the same charge
transfer are explored and interpreted too. A certain analogy is
concluded between early stages of the reaction under study and of
the S
N2 process of alkyl halogenides. Advantages of the
bent bond model of the C=O bond versus the usual
,
-model are
discussed in respect of interpretation of chemical reactivity.
Keywords: bimolecular nucleophilic
addition, carbonyl compounds, the bent bond model, chemical
reactivity, bond orbitals
PACS: 31.15.-p, 31.15.X-, 31.15.xp
NUKLEOFILO PRIJUNGIMAS PRIE
KARBONILO GRUPĖS BANANINIŲ JUNGČIŲ
V. Gineitytė
Vilniaus universiteto Teorinės fizikos ir astronomijos
institutas, Vilnius, Lietuva
Pasiūlytas ir pritaikytas karbonilo junginių
nukleofilinio prijungimo reakcijų modelis, besiremiantis bananinių
jungčių koncepcija, anksčiau gautomis reaguojančios sistemos
viendalelinės tankio matricos išraiškomis ir Hiukelio artiniu
hamiltoniano matricai. Bazinės modelio funkcijos parinktos taip,
kad jos būtų lokalizuotos ant atskirų reaguojančios sistemos
cheminių jungčių. Dviguboji CO jungtis modeliuojama dviem
ekvivalenčiomis bananinėmis jungtimis, kurių viena yra atakuojama
nukleofilo. Gauti rezultatai pagrindžia prielaidą, kad CO jungtis
tampa labiau poliarine, kai deguonies atomas yra koordinuojamas
katijonu. Be to, atsiranda galimybė interpretuoti šį reiškinį
pasitelkiant tarporbitalines sąveikas. Parodyta, jog toks pat
koordinavimas sukelia ir krūvio pernešimo tarp nukleofilo ir
reaguojančios CO jungties padidėjimą vėlesnėse proceso stadijose.
Šie rezultatai leidžia paaiškinti rūgštinės katalizės reiškinį
nagrinėjamose reakcijose. Taip pat ištirta prie anglies atomo
esančių pakaitų įtaka minėtajam krūvio pernešimui, patvirtinant
analogiją tarp nukleofilinio prijungimo prie CO jungties ir
nukleofilinės substitucijos reakcijų alkanų dariniuose ankstyvųjų
stadijų. Aptarti bananinių jungčių modelio privalumai lyginant su
standartiniu (sigma-pi) modeliu dviguboms jungtims.
References / Nuorodos
[1] Chemical Applications of Topology and Graph Theory, ed.
R.B. King (Elsevier, Amsterdam, 1983),
http://www.amazon.co.uk/Chemical-Applications-Topology-Theoretical-Chemistry/dp/0444422447
[2] R. Herges, Chem. Rev. 106, 4820 (2006),
http://dx.doi.org/10.1021/cr0505425
[3] M.J.S. Dewar and R.C. Dougherty, The PMO Theory of Organic
Chemistry (Plenum Press, New York, 1975),
http://dx.doi.org/10.1007/978-1-4615-1751-1
[4] D.-K. Seo, G. Papoian, and R. Hoffmann, Int. J. Quantum Chem. 77,
408 (2000),
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:1%3C408::AID-QUA41%3E3.0.CO;2-1
[5] L. Rincon, J. Mol. Struct. (Theochem) 731, 213 (2005),
http://dx.doi.org/10.1016/j.theochem.2005.04.032
[6] M. Edenborough, Organic Reaction Mechanisms. A Step by Step
Approach (Taylor and Francis, Ltd., London, 1999),
https://www.crcpress.com/Organic-Reaction-Mechanisms-A-Step-by-Step-Approach-Second-Edition/Edenborough/9780748406418
[7] P. Laszlo, Logique de la synthese organique (Ecole
Polytechnique, Paris, 1990),
http://www.editions-ellipses.fr/product_info.php?products_id=1398
[8] A.S. Dnieprovskii and T.I. Temnikova, Theoretical
Fundamentals of Organic Chemistry (Khimia, Leningrad, 1991)
[in Russian]
[9] M. Uemura, K. Yagi, M. Inasaki, M. Nomura, H. Yorimitsu, and K.
Oshima, Tetrahedron 62, 3523 (2006),
http://dx.doi.org/10.1016/j.tet.2006.01.097
[10] R. Gancarz, Tetrahedron 51, 10627 (1995),
http://dx.doi.org/10.1016/0040-4020(95)00634-K
[11] P. Cabon, R. Rumin, J.Y. Salaun, S. Triki, and H. Des Abbayes,
Organometallics 24, 1709 (2005),
http://dx.doi.org/10.1021/om049030r
[12] A. Bogevig, K.V. Gothelf, and K.A. Jorgensen, Chem. Eur. J. 8,
5652 (2002),
http://dx.doi.org/10.1002/1521-3765(20021216)8:24<5652::AID-CHEM5652>3.0.CO;2-J
[13] M. Arno, R.J. Zaragoza, and L.R. Domingo, Tetrahedron:
Asymmetry 15, 1541 (2004),
http://dx.doi.org/10.1016/j.tetasy.2004.03.031
[14] M. Bruvoll, T. Hansen, and E. Uggerud, J. Phys. Org. Chem. 20,
206 (2007),
http://dx.doi.org/10.1002/poc.1170
[15] H. Liu and Y. Shi, J. Comput. Chem. 15, 1311 (2004),
http://dx.doi.org/10.1002/jcc.540151112
[16] N. Tezer and R. Ozkan, J. Mol. Struct. (Theochem) 546,
79 (2001),
http://dx.doi.org/10.1016/S0166-1280(01)00430-4
[17] F. Ogliaro, D.L. Cooper, and B. Karadakov, Int. J. Quantum
Chem. 74, 223 (1999),
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)74:2<223::AID-QUA17>3.0.CO;2-1
[18] F.A. Carroll, Perspectives on Structure and Mechanism in
Organic Chemistry (Brooks/Cole, Pacific Grove, 1998)
[19] V. Gineityte, J. Mol. Struct. (Theochem) 588, 99
(2002),
http://dx.doi.org/10.1016/S0166-1280(02)00146-X
[20] V. Gineityte, Int. J. Quantum Chem. 94, 302 (2003),
http://dx.doi.org/10.1002/qua.10704
[21] V. Gineityte, J. Mol. Struct. (Theochem) 343, 183
(1995),
http://dx.doi.org/10.1016/0166-1280(95)90555-3
[22] V. Gineityte, J. Mol. Struct. (Theochem) 541, 1 (2001),
http://dx.doi.org/10.1016/S0166-1280(00)00628-X
[23] V. Gineityte, J. Mol. Struct. (Theochem) 663, 47
(2003),
http://dx.doi.org/10.1016/j.theochem.2003.08.063
[24] V. Gineityte, J. Mol. Struct. (Theochem) 680, 199
(2004),
http://dx.doi.org/10.1016/j.theochem.2004.03.036
[25] E.A. Robinson and R.J. Gillespie, J. Chem. Educ. 57,
329 (1980),
http://dx.doi.org/10.1021/ed057p329
[26] G.A. Gallup, J. Chem. Educ. 65, 671 (1988),
http://dx.doi.org/10.1021/ed065p671
[27] J.C. Paniagua, A. Moyano, and L.M. Tel, Int. J. Quantum Chem. 26,
383 (2004),
http://dx.doi.org/10.1002/qua.560260307
[28] K.B. Wiberg, Acc. Chem. Res. 29, 229 (1996),
http://dx.doi.org/10.1021/ar950207a
[29] M. Eckert-Maksic, Z.B. Maksic, and R. Gleiter, Theor. Chim.
Acta 66, 193 (1984),
http://dx.doi.org/10.1007/BF00549669
[30] W.E. Palke, J. Am. Chem. Soc. 108, 6543 (1986),
http://dx.doi.org/10.1021/ja00281a017
[31] P.A. Schultz and R.P. Messmer, J. Am. Chem. Soc. 110,
8258 (1988),
http://dx.doi.org/10.1021/ja00232a061
[32] P.A. Schultz and R.P. Messmer, J. Am. Chem. Soc. 115,
10925; 10943 (1993),
http://dx.doi.org/10.1021/ja00076a058
http://dx.doi.org/10.1021/ja00076a060
[33] R.P. Messmer and P.A. Schultz, Phys. Rev. Lett. 57,
2653 (1986),
http://dx.doi.org/10.1103/PhysRevLett.57.2653
[34] C.W. Bauschlicher, Jr. and P.R. Taylor, Phys. Rev. Lett. 60,
859 (1988),
http://dx.doi.org/10.1103/PhysRevLett.60.859
[35] J.A. Pople and D.P. Santry, Mol. Phys. 7, 269 (1964),
http://dx.doi.org/10.1080/00268976300101031
[36] C. Sandorfy, Can. J. Chem. 33, 1337 (1955),
http://dx.doi.org/10.1139/v55-162
[37] H. Yoshizumi, Trans. Faraday Soc. 53, 125 (1957),
http://dx.doi.org/10.1039/tf9575300125
[38] V. Gineitytė, Lithuanian J. Phys. 45, 7 (2005),
http://dx.doi.org/10.3952/lithjphys.45101
[39] V. Gineityte, J. Mol. Struct. (Theochem) 585, 15
(2002),
http://dx.doi.org/10.1016/S0166-1280(02)00028-3
[40] V. Gineityte, J. Mol. Struct. (Theochem) 434, 43
(1998),
http://dx.doi.org/10.1016/S0166-1280(98)00071-2
[41] V. Gineityte, J. Mol. Struct. (Theochem) 713, 93
(2005),
http://dx.doi.org/10.1016/j.theochem.2004.09.037
[42] V. Gineityte, J. Mol. Struct. (Theochem) 810, 91
(2007),
http://dx.doi.org/10.1016/j.theochem.2007.02.002