[PDF]    http://dx.doi.org/10.3952/lithjphys.49410

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 445–451 (2009)


ELECTRIC FIELD STRENGTH AND TEMPERATURE DEPENDENCE OF CONDUCTION RELAXATION IN AlGaN/AlN/GaN 2D ELECTRON GAS
L. Ardaravičius, O. Kiprijanovič, and J. Liberis
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: linas@pfi.lt

Received 10 June 2009; revised 6 November 2009; accepted 18 December 2009

Electrical pulses of ns duration were applied parallel to the interfaces of AlGaN/AlN/GaN samples with a two-dimensional gas channel and an ultra-thin AlN spacer to create electric fields with strength up to 80 kV/cm. Conduction relaxation of the two-dimensional electron gas was measured after the high voltage pulses in temperature range from 86 to 293 K. Results of the conduction relaxation obtained in ns time scale were approximated by an expression containing two exponential components with different time constants. The time constants were chosen to correspond to the relaxation process in the field range from 40 to 60 kV/cm at various temperatures. Analysis of obtained expressions showed that the smaller constant τ1 slightly depended on temperature and the applied electric field and this was attributed to the electron release after the capture of hot electrons into shallow traps located in the AlN spacer or the AlGaN/AlN interface. The greater constant τ2, which appreciably depends both on electric field and temperature, we attribute to electron thermal release after the capture of hot electrons in the GaN layer. Also, the electrons can be thermally released from the centres in GaN present due to fluctuations of the bottom of the conduction band. The activation energy associated with the thermal processes is evaluated.
Keywords: AlGaN/AlN/GaN, pulsed IV measurement, high electric field effects, conduction relaxation
PACS: 65.40.-b, 71.55.Eq, 72.20.Ht, 73.50.Fq


AlGaN/AlN/GaN DVIMAČIŲ ELEKTRONŲ DUJŲ LAIDUMO RELAKSACIJOS PRIKLAUSOMYBĖ NUO ELEKTRINIO LAUKO STIPRIO BEI TEMPERATŪROS
L. Ardaravičius, O. Kiprijanovič, J. Liberis
Puslaidininkių fizikos institutas, Vilnius, Lietuva

AlGaN/AlN/GaN bandiniai su dvimatėmis elektronų dujomis ir labai plonu AlN tarpiniu sluoksniu buvo veikiami nanosekundinės trukmės iki 80 kV/cm stiprio elektriniais laukais, nukreiptais lygiagrečiai darinio plokštumai. Dvimačių elektronų dujų laidumo relaksacija buvo išmatuota, išjungus stipraus elektrinio lauko impulsą, temperatūrų intervale nuo 86 iki 293 K. Nanosekundinėje skalėje gauti laidumo relaksacijos duomenys buvo aproksimuoti išraiška, turinčia du eksponentinius narius su atitinkamomis laiko konstantomis. Šių išraiškų analizė rodo, kad trumpesnioji laiko konstanta nežymiai priklauso nuo aplinkos temperatūros ir elektrinio lauko stiprio, ir ji siejama su elektronų išlaisvinimu iš seklių pagavimo lygmenų AlN tarpiniame sluoksnyje arba AlGaN/AlN sandūroje. Ilgesnioji laiko konstanta yra siejama su elektronų šiluminiu išlaisvinimu iš pagavimo lygmenų GaN sluoksnyje. Taip pat elektronai gali būti termiškai išlaisvinami iš pagavimo centrų GaN, susidariusių dėl laidumo juostos dugno fliuktuacijų. Įvertinta šiluminio proceso aktyvacijos energija.


References / Nuorodos


[1] M.S. Andreev, L.E. Velikovskii, T.S. Kitichenko, T.G. Kolesnikova, A.P. Korovin, V.G. Mokerov, and S.N. Yakunin, Deep-level trapping centers in heterostructures for GaN field-effect transistors, J. Commun. Technol. Electron. 52, 819 (2007),
http://dx.doi.org/10.1134/S1064226907070157
[2] O. Kiprijanovič, J. Liberis, A. Matulionis, and L. Ardaravičius, Drift velocity measurement and hot electron capture in AlGaN/AlN/GaN, Lithuanian J. Phys. 45, 477 (2005),
http://dx.doi.org/10.3952/lithjphys.45609
[3] L. Ardaravičius, O. Kiprijanovič, and J. Liberis, Relaxation of conductivity in AlGaN/AlN/GaN two dimensional electron gas at high electric fields, Lithuanian J. Phys. 47, 485 (2007),
http://dx.doi.org/10.3952/lithjphys.47417
[4] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I.P. Smorchkova, S. Keller, S.P. DenBaars, and U.K. Mishra, AlGaN/AlN/GaN high-power microwave HEMT, IEEE Electron Device Lett. 22, 457 (2001),
http://dx.doi.org/10.1109/55.954910
[5] M. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka, and O. Oda, High-electron-mobility AlGaN/AlN/GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy, Appl. Phys. Lett. 85, 1710 (2004),
http://dx.doi.org/10.1063/1.1790073
[6] R.S. Balmer, K.P. Hilton, K.J. Nash, M.J. Uren, D.J.Wallis, D. Lee, A.Wells, M. Missous, and T. Martin, Analysis of thin AlN carrier exclusion layers in AlGaN/GaN microwave heterojunction field-effect transistors, Semicond. Sci. Technol. 19, L65 (2004),
http://dx.doi.org/10.1088/0268-1242/19/6/L02
[7] B. Shen, T. Someaya, and Y. Arakawa, Influence of strain relaxation of the AlxGa1–xN barrier on transport properties of the two dimensional electron gas in modulation-doped AlxGa1–xN/GaN heterostructures, Appl. Phys. Lett. 76, 2746 (2000),
http://dx.doi.org/10.1063/1.126463
[8] M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, and Y.J. Sun, Hot-phonon effect on power dissipation in a biased AlxGa1–xN/AlN/GaN channel, Phys. Rev. B 71, 075324 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.075324
[9] J. Khurgin, Y. Ding, and D. Jena, Hot-phonon effect on electron velocity saturation in GaN: A second look, Appl. Phys. Lett. 91, 252104 (2007),
http://dx.doi.org/10.1063/1.2824872
[10] M. Ramonas and A. Matulionis, Monte Carlo simulation of hot-phonon effects in a biased AlGaN/GaN channel, Semicond. Sci. Technol. 19, S424 (2004),
http://dx.doi.org/10.1088/0268-1242/19/4/139
[11] Y.-R. Wu and J. Singh, Transient study of self-heating effects in AlGaN/GaN HFETs: Consequence of carrier velocities, temperature, and device performance, J. Appl. Phys. 101, 113712 (2007),
http://dx.doi.org/10.1063/1.2745286
[12] S. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, and E. Ozbay, Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures, Semicond. Sci. Technol. 22, 543 (2007),
http://dx.doi.org/10.1088/0268-1242/22/5/015
[13] S. Lisesivdin, A. Yildiz, S. Acar, M. Kasap, S. Ozcelik, and E. Ozbay, Electronic transport characterization of AlGaN/GaN heterostructures using quantitative mobility spectrum analysis, Appl. Phys. Lett. 91, 102113 (2007),
http://dx.doi.org/10.1063/1.2778453
[14] S. Vitusevich, S. Daniliuk, N. Klein, M. Petrychuk, A. Avksentyev, V. Sokolov, V. Kochelap, A. Beliaev, V. Tilak, J. Smart, A. Vertiatchich, and L. Eastman, Separation of hot-electron and self-heating effects in two-dimensional AlGaN/GaN-based conducting channels, Appl. Phys. Lett. 82, 748 (2003),
http://dx.doi.org/10.1063/1.1542928
[15] A. Matulionis, L. Ardaravičius, J. Liberis, V. Aninkevičius, and D. Gasquet, High-frequency noise in InAlAs/InGaAs/InAlAs quantum-well channels, in: Proceedings of the 16th International Conference on Noise in Physical Systems and 1/f Fluctuations – ICNF2001, p. 517 (2001),
http://dx.doi.org/10.1142/9789812811165_0116
[16] K. Kazlauskas, A. Žukauskas, G. Tamulaitis, J. Mickevičius, M.S. Shur, R.S. Qhalid Fareed, J.P. Zhang, and R. Gaska, Exciton hopping and nonradiative decay in AlGaN epilayers, Appl. Phys. Lett. 87, 172102 (2005),
http://dx.doi.org/10.1063/1.2112169