[PDF]
http://dx.doi.org/10.3952/lithjphys.49410
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 445–451 (2009)
ELECTRIC FIELD STRENGTH AND
TEMPERATURE DEPENDENCE OF CONDUCTION RELAXATION IN AlGaN/AlN/GaN
2D ELECTRON GAS
L. Ardaravičius, O. Kiprijanovič, and J. Liberis
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: linas@pfi.lt
Received 10 June 2009; revised 6
November 2009; accepted 18 December 2009
Electrical pulses of ns duration
were applied parallel to the interfaces of AlGaN/AlN/GaN samples
with a two-dimensional gas channel and an ultra-thin AlN spacer to
create electric fields with strength up to 80 kV/cm. Conduction
relaxation of the two-dimensional electron gas was measured after
the high voltage pulses in temperature range from 86 to 293 K.
Results of the conduction relaxation obtained in ns time scale
were approximated by an expression containing two exponential
components with different time constants. The time constants were
chosen to correspond to the relaxation process in the field range
from 40 to 60 kV/cm at various temperatures. Analysis of obtained
expressions showed that the smaller constant
1 slightly
depended on temperature and the applied electric field and this
was attributed to the electron release after the capture of hot
electrons into shallow traps located in the AlN spacer or the
AlGaN/AlN interface. The greater constant
2, which
appreciably depends both on electric field and temperature, we
attribute to electron thermal release after the capture of hot
electrons in the GaN layer. Also, the electrons can be thermally
released from the centres in GaN present due to fluctuations of
the bottom of the conduction band. The activation energy
associated with the thermal processes is evaluated.
Keywords: AlGaN/AlN/GaN, pulsed I–V
measurement, high electric field effects, conduction relaxation
PACS: 65.40.-b, 71.55.Eq, 72.20.Ht, 73.50.Fq
AlGaN/AlN/GaN DVIMAČIŲ ELEKTRONŲ
DUJŲ LAIDUMO RELAKSACIJOS PRIKLAUSOMYBĖ NUO ELEKTRINIO LAUKO
STIPRIO BEI TEMPERATŪROS
L. Ardaravičius, O. Kiprijanovič, J. Liberis
Puslaidininkių fizikos institutas, Vilnius, Lietuva
AlGaN/AlN/GaN bandiniai su dvimatėmis elektronų
dujomis ir labai plonu AlN tarpiniu sluoksniu buvo veikiami
nanosekundinės trukmės iki 80 kV/cm stiprio elektriniais laukais,
nukreiptais lygiagrečiai darinio plokštumai. Dvimačių elektronų
dujų laidumo relaksacija buvo išmatuota, išjungus stipraus
elektrinio lauko impulsą, temperatūrų intervale nuo 86 iki 293 K.
Nanosekundinėje skalėje gauti laidumo relaksacijos duomenys buvo
aproksimuoti išraiška, turinčia du eksponentinius narius su
atitinkamomis laiko konstantomis. Šių išraiškų analizė rodo, kad
trumpesnioji laiko konstanta nežymiai priklauso nuo aplinkos
temperatūros ir elektrinio lauko stiprio, ir ji siejama su
elektronų išlaisvinimu iš seklių pagavimo lygmenų AlN tarpiniame
sluoksnyje arba AlGaN/AlN sandūroje. Ilgesnioji laiko konstanta
yra siejama su elektronų šiluminiu išlaisvinimu iš pagavimo
lygmenų GaN sluoksnyje. Taip pat elektronai gali būti termiškai
išlaisvinami iš pagavimo centrų GaN, susidariusių dėl laidumo
juostos dugno fliuktuacijų. Įvertinta šiluminio proceso
aktyvacijos energija.
References / Nuorodos
[1] M.S. Andreev, L.E. Velikovskii, T.S. Kitichenko, T.G.
Kolesnikova, A.P. Korovin, V.G. Mokerov, and S.N. Yakunin,
Deep-level trapping centers in heterostructures for GaN field-effect
transistors, J. Commun. Technol. Electron. 52, 819 (2007),
http://dx.doi.org/10.1134/S1064226907070157
[2] O. Kiprijanovič, J. Liberis, A. Matulionis, and L. Ardaravičius,
Drift velocity measurement and hot electron capture in
AlGaN/AlN/GaN, Lithuanian J. Phys. 45, 477 (2005),
http://dx.doi.org/10.3952/lithjphys.45609
[3] L. Ardaravičius, O. Kiprijanovič, and J. Liberis, Relaxation of
conductivity in AlGaN/AlN/GaN two dimensional electron gas at high
electric fields, Lithuanian J. Phys. 47, 485 (2007),
http://dx.doi.org/10.3952/lithjphys.47417
[4] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D.
Buttari, I.P. Smorchkova, S. Keller, S.P. DenBaars, and U.K. Mishra,
AlGaN/AlN/GaN high-power microwave HEMT, IEEE Electron Device Lett.
22, 457 (2001),
http://dx.doi.org/10.1109/55.954910
[5] M. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T.
Shibata, M. Tanaka, and O. Oda, High-electron-mobility AlGaN/AlN/GaN
heterostructures grown on 100-mm-diam epitaxial AlN/sapphire
templates by metalorganic vapor phase epitaxy, Appl. Phys. Lett. 85,
1710 (2004),
http://dx.doi.org/10.1063/1.1790073
[6] R.S. Balmer, K.P. Hilton, K.J. Nash, M.J. Uren, D.J.Wallis, D.
Lee, A.Wells, M. Missous, and T. Martin, Analysis of thin AlN
carrier exclusion layers in AlGaN/GaN microwave heterojunction
field-effect transistors, Semicond. Sci. Technol. 19, L65
(2004),
http://dx.doi.org/10.1088/0268-1242/19/6/L02
[7] B. Shen, T. Someaya, and Y. Arakawa, Influence of strain
relaxation of the AlxGa1–xN barrier on transport properties of the
two dimensional electron gas in modulation-doped AlxGa1–xN/GaN
heterostructures, Appl. Phys. Lett. 76, 2746 (2000),
http://dx.doi.org/10.1063/1.126463
[8] M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, and
Y.J. Sun, Hot-phonon effect on power dissipation in a biased AlxGa1–xN/AlN/GaN
channel, Phys. Rev. B 71, 075324 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.075324
[9] J. Khurgin, Y. Ding, and D. Jena, Hot-phonon effect on electron
velocity saturation in GaN: A second look, Appl. Phys. Lett. 91,
252104 (2007),
http://dx.doi.org/10.1063/1.2824872
[10] M. Ramonas and A. Matulionis, Monte Carlo simulation of
hot-phonon effects in a biased AlGaN/GaN channel, Semicond. Sci.
Technol. 19, S424 (2004),
http://dx.doi.org/10.1088/0268-1242/19/4/139
[11] Y.-R. Wu and J. Singh, Transient study of self-heating effects
in AlGaN/GaN HFETs: Consequence of carrier velocities, temperature,
and device performance, J. Appl. Phys. 101, 113712 (2007),
http://dx.doi.org/10.1063/1.2745286
[12] S. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, and E.
Ozbay, Scattering analysis of 2DEG carrier extracted by QMSA in
undoped Al0.25Ga0.75N/GaN heterostructures,
Semicond. Sci. Technol. 22, 543 (2007),
http://dx.doi.org/10.1088/0268-1242/22/5/015
[13] S. Lisesivdin, A. Yildiz, S. Acar, M. Kasap, S. Ozcelik, and E.
Ozbay, Electronic transport characterization of AlGaN/GaN
heterostructures using quantitative mobility spectrum analysis,
Appl. Phys. Lett. 91, 102113 (2007),
http://dx.doi.org/10.1063/1.2778453
[14] S. Vitusevich, S. Daniliuk, N. Klein, M. Petrychuk, A.
Avksentyev, V. Sokolov, V. Kochelap, A. Beliaev, V. Tilak, J. Smart,
A. Vertiatchich, and L. Eastman, Separation of hot-electron and
self-heating effects in two-dimensional AlGaN/GaN-based conducting
channels, Appl. Phys. Lett. 82, 748 (2003),
http://dx.doi.org/10.1063/1.1542928
[15] A. Matulionis, L. Ardaravičius, J. Liberis, V. Aninkevičius,
and D. Gasquet, High-frequency noise in InAlAs/InGaAs/InAlAs
quantum-well channels, in: Proceedings of the 16th International
Conference on Noise in Physical Systems and 1/f Fluctuations –
ICNF2001, p. 517 (2001),
http://dx.doi.org/10.1142/9789812811165_0116
[16] K. Kazlauskas, A. Žukauskas, G. Tamulaitis, J. Mickevičius,
M.S. Shur, R.S. Qhalid Fareed, J.P. Zhang, and R. Gaska, Exciton
hopping and nonradiative decay in AlGaN epilayers, Appl. Phys. Lett.
87, 172102 (2005),
http://dx.doi.org/10.1063/1.2112169