[PDF]
http://dx.doi.org/10.3952/lithjphys.49409
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 479–485 (2009)
THE USE OF MINERAL MAGNETIC
PARAMETERS TO CHARACTERIZE ARCHAEOLOGICAL ARTIFACTS
R. Venkatachalapathya, A. Loganathanb, N.
Basavaiahc, and C. Manoharand
aC. A. S. in Marine Biology, Annamalai University,
Parangipettai – 608 502, India
E-mail: venkatr5@rediffmail.com
bFaculty of Engineering and Technology, Annamalai
University, Annamalainagar – 608 002, India
cIndian Institute of Geomagnetism, New Panvel, Navi
Mumbai – 410 218, India
dDepartment of Physics, Annamalai University,
Annamalainagar – 608 002, India
Received 23 August 2009; revised 21
November 2009; accepted 18 December 2009
This study investigates the
magnetic mineralogy of a collection of archaeological potteries.
Actual magnetic carriers and the domain states of the constituent
magnetic fine particles have been obtained from the acquisition of
isothermal remanence and low field susceptibility measurements.
The magnetic mineralogy of all samples has been dominated by
ferrimagnetic mineral (magnetite/magnetite with low titanium
content) which is suitable for paleointensity measurement in
determining the intensity of the ancient geomagnetic field.
Keywords: rock and mineral magnetism,
archaeological pottery
PACS: 91.25.F-
MINERALŲ MAGNETINIŲ PARAMETRŲ
PANAUDOJIMAS ARCHEOLOGINIAMS RADINIAMS APIBŪDINTI
R. Venkatachalapathya, A. Loganathanb, N.
Basavaiahc, C. Manoharand
aAnamalai universiteto Jūrų biologijos auktesniųjų
studijų centras, Parangipettai, Indija
bAnamalai universiteto Inžinerijos ir
technologijos fakultetas, Annamalainagar, Indija
cIndijos geomagnetizmo institutas, New Panvel,
Navi Mumbai, Indija
dAnamalai universiteto Fizikos katedra,
Annamalainagar, Indija
Magnetinės mineralogijos metodais tirtas
archeologinių lipdinių šukių rinkinys. Išmatavus izoterminį
nuovargį ir jutą silpname lauke, nustatyti tikrieji magnetizmo
šaltiniai ir smulkių sudėtinių magnetinių dalelių domeninės
būsenos. Visų bandinių magnetinėje mineralinėje sudėtyje dominavo
ferimagnetinis mineralas (magnetitas ar magnetitas su nedidele
titano priemaiša), tinkamas paleointensyvumui matuoti nustatant
senovės geomagnetinio lauko intensyvumą.
References / Nuorodos
[1] N. Jordanova, E. Petrousky, M. Kovacheva, and D. Jordanova,
Factors determining magnetic enhancement of burnt clay from
archaeological sites, J. Archaeol. Sci. 28, 1137–1148
(2007),
http://dx.doi.org/10.1006/jasc.2000.0645
[2] N. Abrahamsen, An archaeomagnetic mastercurve for Denmark 0–2000
AD and the possible dating accuracy, in: Proceedings of the
Sixth Nordic Conference on the Application of Scientific Methods
in Archaeology, Esberg Museum 1993, 261–271 (1996)
[3] R. Venkatachalapathy, T. Bakas, N. Basavaiah, and K.
Deenadayalan, Mössbauer and mineral magnetic studies on
archaeological potteries from Adhichanallur, Tamilnadu, India,
Hyperfine Interact. 186, 89–98 (2008),
http://dx.doi.org/10.1007/s10751-008-9860-0
[4] C. Manoharan, K. Veeramuthu, R. Venkatachalapathy, T.
Radhakrishna, and R. Ilango, Spectroscopic and ancient geomagnetic
field intensity studies on archaeological pottery samples, India,
Lithuanian J. Phys. 48, 195–202 (2008),
http://dx.doi.org/10.3952/lithjphys.48212
[5] R. Thompson and F. Oldfield, Environmental Magnetism
(Allen & Unwin, London, 1986),
http://dx.doi.org/10.1007/978-94-011-8036-8
[6] S.D. Mooney, C. Geiss, and M.A. Smith, The use of mineral
magnetic parameters to characterize archaeological ochres, J.
Archaeol. Sci. 29, 1–10 (2002),
http://dx.doi.org/10.1006/jasc.2002.0856
[7] C. Mullins and M. Tite, Magnetic viscosity, quadrature
susceptibility and frequency dependence of susceptibility in single
domain assemblies of magnetite and maghemite, J. Geophys. Res. 78,
804–809 (1973),
http://dx.doi.org/10.1029/JB078i005p00804
[8] B.A. Maher, Magnetic properties of some synthetic sub-micron
magnetites, Geophys. J. 94, 83–96 (1998),
http://dx.doi.org/10.1111/j.1365-246X.1988.tb03429.x
[9] J. Dearing, R. Dann, K. Hay, J. Less, P. Loveland, B. Maher, and
K. O'Grady, Frequency-dependent susceptibility measurement of
environmental materials, Geophys. J. Int. 124, 228–240
(1996),
http://dx.doi.org/10.1111/j.1365-246X.1996.tb06366.x
[10] J. Dearing, K. Hay, S. Baban, A. Huddleston, E. Wellington, and
P. Loveland, Magnetic susceptibility of soil: An evaluation of
conflicting theories using a national data set, Geophys. J. Int. 127,
728–734 (1996),
http://dx.doi.org/10.1111/j.1365-246X.1996.tb04051.x
[11] T. Forster, M. Evans, and F. Heller, The frequency dependence
of low susceptibility of ferrofluids, J. Phys. D 22, 449–450
(1994).
[12] L. Néel, Thêorie du traînage magnétique des ferromagnétiques en
grains fins avec applications aux terres cuites. Ann. Géophys. 5,
99–136 (1949).
[13] J.K. Eyre, Frequency dependence of magnetic susceptibility for
populations of single-domain grains, Geophys. J. Int. 129,
209–211 (1997),
http://dx.doi.org/10.1111/j.1365-246X.1997.tb00951.x
[14] H.U. Worm, On the superparamagnetic–stable single domain
transition for magnetite, and frequency dependence of
susceptibility, Geophys. J. Int. 133, 201–206 (1998),
http://dx.doi.org/10.1046/j.1365-246X.1998.1331468.x
[15] J. Dearing, P. Bird, R. Dann, and S. Benjamin, Secondary
ferrimagnetic minerals in Welsh soils: A comparison of mineral
magnetic detection methods and implications for mineral formation,
Geophys. J. Int. 130, 727–736 (1997),
http://dx.doi.org/10.1111/j.1365-246X.1997.tb01867.x
[16] C.P. Hunt, B.M. Moskowitz, and S.K. Banerjee, Magnetic
properties of rocks and minerals, in: Rock Physics and Phase
Relations. A Handbook of Physical Constants, ed. T.J. Ahrens
(AGU Reference Shelf, 1995) pp. 189–204,
http://dx.doi.org/10.1029/RF003p0189
[17] J. Blomendal, J.W. King, F.R. Hall, and S.H. Doh, Rock
magnetism of Late Neogene and Pleistocene deep-sea sediments:
Relationship with sediment source, diagenetic processes, and
sedimentation lithology, J. Geophys. Res. 97, 4361–4375
(1992),
http://dx.doi.org/10.1029/91JB03068
[18] S.A. McEnore, P. Robinson, and P.T. Panish, Aeromagnetic
anomalies, magnetic petrology, and rock magnetism of
hemo-ilmenite-and magnetite-rich cumulate rocks from the Sokndal
Region, South Rogaland, Norway, Am. Mineral. 86, 1447–1468
(2001),
http://dx.doi.org/10.2138/am-2001-11-1213
[19] D.J. Dunlop and Ö. Özdemir, Rock Magnetism: Fundamentals
and Frontiers, Cambridge Studies in Magnetism series, ed. D.
Edwards (Cambridge University Press, Cambridge, 1997),
http://dx.doi.org/10.1017/CBO9780511612794
[20] L.M. Alva-Valdivia, M.L. Rivas, A. Goguitchaichivili, J.
Urrutia-Fucugauchi, J.A. Gonzalez, J. Morales, S. Gómez, F.
Henríquez, J.O. Nyström, and R.H. Naslund, Rock-magnetic and oxide
microscopic studies of the E1 Laco iron ore deposits, Chilean Andes,
and implications for magnetic anomaly modeling, Int. Geol. Rev. 45,
533–547 (2003),
http://dx.doi.org/10.2747/0020-6814.45.6.533
[21] N. Basavaiah and A.S. Khadkikar, Environmental magnetism and
palaeomonsoon, J. Indian Geophys. Union 8, 1–77 (2004),
http://igu.in/8-1/1basavaiah.pdf