[PDF]
http://dx.doi.org/10.3952/lithjphys.49411
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 471–478 (2009)
IMPACT OF KRYPTON-85 BETA
RADIATION ON AEROSOL PARTICLE FORMATION AND TRANSFORMATION
V. Ulevičiusa, D. Butkusb, K. Plauškaitėa,
A. Girgždysb, S. Byčenkienėa, and N.
Špirkauskaitėa
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt
bVilnius Gediminas Technical University, Saulėtekio
11, LT-10223 Vilnius, Lithuania
Received 6 October 2009; revised 19
November 2009; accepted 18 December 2009
In this study the effect of the
air ionization by
85Kr beta radiation on the new
particle formation and evolution of aerosol particle size
distribution in the experimental chamber was investigated. During
the experiments the interaction between air ionization and
gas-to-particle conversion processes was distinctly observed.
Results showed that the amplitude of the ionic current was
dependent both on the chemical impurity concentration and the
ionization source activity. Calculated values of parameters
(growth and formation rates) of the particle nucleation process
were larger when in the experimental chamber concentrations of SO
2
and
85Kr were higher. The growth rate values (42.1 and
45.3 nm/h) were by one order of magnitude higher than the
environmental ones (1.2–9.9 nm/h at the Preila station,
Lithuania). Experimental data showed that after injection of high
SO
2 and
85Kr concentrations in the chamber
during the 20 min interval nanometre-size particles created by
nucleation were produced in large amounts. Thus, a larger amount
of SO
2 significantly influenced the formation of new
particles. During the first 5 min the concentration of 10 nm
particles increased by 3 orders of magnitude with the formation
rate of 7.47 cm
–3s
–1. The formation rate of
0.06 cm
–3s
–1 in the experiment with the
average ambient SO
2 concentration (23
g/m
3)
was analogous to the environmental one (0.14 cm
–3s
–1).
The coagulation sink (
)
was higher in the experiment with the ambient SO
2
concentration and resulted in the lower concentration of
particles. The smaller values of the coagulation sink at the
higher concentration of SO
2 gas have shown that these
nano-particles in the air could persist for a longer time,
probably in a stable size due to the ion charge.
Keywords: aerosol particles,
experimental chamber, air ionization, nucleation characteristics,
85Kr, SO2
PACS: 92.20.Bk, 92.60.Mt, 68.55.AA
85Kr BETA
SPINDULIUOTĖS ĮTAKA AEROZOLIO DALELIŲ FORMAVIMUISI IR
TRANSFORMACIJOMS
V. Ulevičiusa, D. Butkusb, K. Plauškaitėa,
A. Girgždysb, S. Byčenkienėa, N.
Špirkauskaitėa
aFizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Eksperimentinėje kameroje tirtas
85Kr
beta spinduliuotės jonizacijos, sukeltos ore, poveikis aerozolio
dalelių susidarymui ir jų dydžių spektrui. Aerozolio dalelių
formavimuisi poveikį turėjo ir jonizacijos laipsnis, ir cheminės
priemaišos (SO
2) koncentracija. Įvedus į kamerą dideles
SO
2 ir
85Kr koncentracijas, per pirmąsias
20 min. aerozolio dalelių koncentracijos padidėjo net keliomis
eilėmis. Ypač sparčiai aerozolio dalelių koncentracija padidėjo
padidinus kameroje SO
2 koncentraciją. Esant didesnei SO
2
koncentracijai, greičiau formavosi ir aerozolio dalelės, o
formavimosi greitis skyrėsi eile nuo stebimo gamtinėje aplinkoje
(Preilos stotyje), atitinkamai 42,1–45,3 ir 1,2–9,9 nm/h.
Aerozolio dalelių formavimosi greičiai eksperimento metu, esant
padidintai jonizacijai ir SO
2 koncentracijai (2–3
g/m
3)
kaip foninėje stotyje ore, buvo panašūs, atitinkamai 0,06 ir 0,14
cm
–3s
–1. Aerozolio dalelių koaguliacinis
nuotėkis buvo didesnis eksperimente, kai SO
2
koncentracija buvo lygi gamtinei. Kai buvo didelės SO
2
ir
85Kr koncentracijos, aerozolio dalelių
koaguliacinis nuotėkis buvo mažesnis, kas rodo, kad nanometrinių
dydžių dalelės lėčiau pasišalino iš oro dėl koaguliacijos.
References / Nuorodos
[1] M. Kulmala , H. Vehkamaki, T. Petaja, M. Dal Maso, A. Lauri, V.
Kerminen, W. Birmilli, and P. McMurry, Formation and growth rates of
ultrafine atmospheric particles, A review of observations, J.
Aerosol Sci. 35, 143–176 (2004).
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
[2] A. Lushnikov and M. Kulmala, Charging of aerosol particles in
the near free-molecule regime, Europhys. J. D 29, 345–355
(2004),
http://dx.doi.org/10.1140/epjd/e2004-00047-9
[3] A. Kristensson, M. Dal Maso, E. Swietlicki, T. Hussein, J. Zhou,
V.M. Kerminen, and M. Kulmala, Characterization of new particle
formation events at a background site in Southern Sweden: relation
to air mass history, Tellus B 60, 330–344 (2008),
http://dx.doi.org/10.3402/tellusb.v60i3.16927
[4] N.S. Holmes, A review of particle formation events and growth in
the atmosphere in the various environments and discussion of
mechanistic implications, Atmos. Environ. 41, 2183–2201
(2007),
http://dx.doi.org/10.1016/j.atmosenv.2006.10.058
[5] A. Hamed, J. Joutsensaari, S. Mikkonen, L. Sogacheva, M. Dal
Maso, M. Kulmala, F. Cavalli, S. Fuzzi, M.C. Facchini, S. Decesari,
M. Mircea, K.E.J. Lehtinen, and A. Laaksonen, Nucleation and growth
of new particles in Po Valley, Italy, Atmos. Chem. Phys. 7, 355–376
(2007),
http://dx.doi.org/10.5194/acp-7-355-2007
[6] M. Dal Maso, L. Sogacheva, P.P. Aalto, I. Riipinen, M. Komppula,
P. Tunved, L. Korhonen, V. Suur-Uski, A. Hirsikko, T. Kurtén, V.-M.
Kerminen, H. Lihavainen, Y. Viisanen, H.-C. Hansson, and M. Kulmala,
Aerosol size distribution measurements at four Nordic field
stations: identification, analysis and trajectory analysis of new
particle formation bursts, Tellus B 59, 350–361 (2007),
http://dx.doi.org/10.1111/j.1600-0889.2007.00267.x
[7] B. Bonn, M. Kulmala, I. Riipinen, S.L. Sihto, and T.M.
Ruuskanen, How biogenic terpenes govern the correlation between
sulfuric acid concentrations and new particle formation, J. Geophys.
Res. 113, D11209 (2008),
http://dx.doi.org/10.1029/2007JD009078
[8] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T. Hussein,
P.P. Aalto, and K.E.J. Lehtinen, Formation and growth of fresh
atmospheric aerosols: eight years of aerosol size distribution data
from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res. 10(5),
323–336 (2005),
http://www.borenv.net/BER/pdfs/ber10/ber10-323.pdf
[9] K. Plauškaitė, R. Kazlauskaitė, J. Andriejauskienė, and V.
Ulevičius, Parameterization of new particle formation and growth at
the Preila station, Lithuanian J. Phys. 45, 139–147 (2005),
http://dx.doi.org/10.3952/lithjphys.45210
[10] V. Ulevičius, G. Mordas, and K. Plauškaitė, Nucleation events
at the Preila environmental research station, Environ. Chem. Phys. 24,
38–44 (2002)
[11] Ü. Kikas, A. Reinart, A. Pugatshova, E. Tamm, and V. Ulevičius,
Microphysical, chemical and optical aerosol properties in the Baltic
Sea region, Atmos. Res. 90, 211–222 (2008),
http://dx.doi.org/10.1016/j.atmosres.2008.02.009
[12] A.P. Hyvärinen, M. Komppula, C. Engler, N. Kivekäs, V.M.
Kerminen, M. Dal Maso, Y. Viisanen, and H. Lihavainen, Atmospheric
new particle formation at Utö, Baltic Sea 2003–2005, Tellus 60B,
345–352 (2008),
http://dx.doi.org/10.1111/j.1600-0889.2008.00343.x
[13] R. Jasiulionis, Ionizing radiation doses in the environment of
the Ignalina NPP, Lithuanian J. Phys. 42, 61–64 (2002)
[14] V. Smirnov, Deformation of ionic, gaseous and aerosol
compositions in the air by the radioactive matter pollution,
Collections IEM 19(152), 45–60 (1992) [in Russian]
[15] B. Styro and D. Butkus, Geophysical Problems of Krypton–85
in the Atmosphere (Mokslas, Vilnius, Lithuania, 1988) [in
Russian]
[16] R. Jasiulionis, R. Krenevičius, J.L. Morkeliūnas, and J.
Jablonskas, Air ionization in the NPP jet, in: Annual Report
1992 (Institute of Physics, Vilnius, Lithuania, 1992) pp.
74–77
[17] V. Matuolis and P. Polukordas, An evaluation of the atmosphere
ionization state on the territory of the Lithuanian SSR in May–June
1986, Atmos. Phys. 14, 28–37 (1989) [in Lithuanian]
[18] V. Smirnov, Electrical characteristics of the air in the zone
of the Chernobyl NPP accident, Collections IEM 19(152),
111–122 (1992) [in Russian]
[19] V. Kornienko and V. Smirnov, Investigation of stimulated
gas-particle conversion in the atmosphere, Collections IEM 51(142),
99–109 (1990) [in Russian]
[20] G.J. Madelaine, M.L. Perrin, and A. Renoux, Formation and
evolution of ultrafine particles produced by radiolysis and
photolysis, J. Geophys. Res. 85, 7471-–7474 (1980),
http://dx.doi.org/10.1029/JC085iC12p07471
[21] V. Winklymayr, M. Ramamurthi, R. Strydom, and P.K. Hopke, Size
distribution measurements of ultrafine aerosols, dp
> 1.8 nm, formed by radiolysis in a diameter measurement analyzer
aerosol charger, Aerosol Sci. Technol. 13, 394–398 (1990),
http://dx.doi.org/10.1080/02786829008959454
[22] P.H. McMurry and J.C. Wilson, Growth laws for the formation of
secondary ambient aerosols: Implications for chemical conversion
mechanisms, Atmos. Environ. 16, 121–134 (1982),
http://dx.doi.org/10.1016/0004-6981(82)90319-5
[23] V. Ulevičius, S. Trakumas, and A. Girgždys, Aerosol size
distribution transformation in fog, Atmos. Environ. 28,
795–800 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90238-0
[24] B. Verheggen and M. Mozurkewich, Determination of the
nucleation rate from observation of a SO2 induced
atmospheric nucleation event, J. Geophys. Res. 107, 4123
(2002),
http://dx.doi.org/10.1029/2001JD000683
[25] A. Juozaitis, S. Trakumas, R. Girgždienė, A. Girgždys, D.
Šopauskienė, and V. Ulevičius, Investigations of gas-to-particle
conversion in the atmosphere, Atmos. Res. 41, 183–201
(1996),
http://dx.doi.org/10.1016/0169-8095(96)00008-7
[26] A. Juozaitis, V. Ulevičius, A. Girgždys, and K. Willeke,
Differentiation of hydrophobic from hydrophilic submicrometer
aerosol particles, Aerosol Sci. Technol. 18, 202–212 (1993),
http://dx.doi.org/10.1080/02786829308959595
[27] K.T. Whitby, W.E. Clark, V.A. Marple, G.M. Sverdrup, G.J. Sem,
K. Willeke, B.Y.H. Liu, and D.Y.H. Pui, Characterization of
California aerosols - 1. Size distributions of freeway aerosol,
Atmos. Environ. 9, 463–482 (1975),
http://dx.doi.org/10.1016/0004-6981(75)90107-9
[28] W.A. Hoppel, Determination of the aerosol size distribution
from the mobility distribution of the charged fraction of aerosols,
J. Aerosol Sci. 9, 41–54 (1978),
http://dx.doi.org/10.1016/0021-8502(78)90062-9
[29] B.T. Chen, H.C. Yeh, and Y.S. Cheng, Evaluation of an
environmental reaction chamber, Aerosol Sci. Technol. 17,
9–24 (1992),
http://dx.doi.org/10.1080/02786829208959556
[30] M. Kulmala, A. Toivonen, J.M. Mäkelä, and A. Laaksonen,
Analysis and growth of the nucleation mode particles observed in
Boreal forest, Tellus 50B, 449–462 (1998),
http://dx.doi.org/10.1034/j.1600-0889.1998.t01-4-00004.x
[31] M. Kulmala, M. Dal Maso, J.M. Mäkelä, L. Pirjola, M. Väkevä,
P.P. Aalto, P. Miikkulainen, K. Hämeri, and C. O'Dowd, On the
formation, growth and composition of nucleation mode particles,
Tellus 53B, 479–490 (2001),
http://dx.doi.org/10.1034/j.1600-0889.2001.d01-33.x
[32] M. Kulmala, Nucleation as an Aerosol Physical Problem,
PhD thesis, University of Helsinki, Department of Physics (Helsinki,
Finland, 1988)