[PDF]    http://dx.doi.org/10.3952/lithjphys.49411

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 471–478 (2009)


IMPACT OF KRYPTON-85 BETA RADIATION ON AEROSOL PARTICLE FORMATION AND TRANSFORMATION
V. Ulevičiusa, D. Butkusb, K. Plauškaitėa, A. Girgždysb, S. Byčenkienėa, and N. Špirkauskaitėa
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt
bVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 6 October 2009; revised 19 November 2009; accepted 18 December 2009

In this study the effect of the air ionization by 85Kr beta radiation on the new particle formation and evolution of aerosol particle size distribution in the experimental chamber was investigated. During the experiments the interaction between air ionization and gas-to-particle conversion processes was distinctly observed. Results showed that the amplitude of the ionic current was dependent both on the chemical impurity concentration and the ionization source activity. Calculated values of parameters (growth and formation rates) of the particle nucleation process were larger when in the experimental chamber concentrations of SO2 and 85Kr were higher. The growth rate values (42.1 and 45.3 nm/h) were by one order of magnitude higher than the environmental ones (1.2–9.9 nm/h at the Preila station, Lithuania). Experimental data showed that after injection of high SO2 and 85Kr concentrations in the chamber during the 20 min interval nanometre-size particles created by nucleation were produced in large amounts. Thus, a larger amount of SO2 significantly influenced the formation of new particles. During the first 5 min the concentration of 10 nm particles increased by 3 orders of magnitude with the formation rate of 7.47 cm–3s–1. The formation rate of 0.06 cm–3s–1 in the experiment with the average ambient SO2 concentration (2–3 μμg/m3) was analogous to the environmental one (0.14 cm–3s–1). The coagulation sink (CoagS1,2,3\mathrm{CoagS_{1,2,3}}) was higher in the experiment with the ambient SO2 concentration and resulted in the lower concentration of particles. The smaller values of the coagulation sink at the higher concentration of SO2 gas have shown that these nano-particles in the air could persist for a longer time, probably in a stable size due to the ion charge.
Keywords: aerosol particles, experimental chamber, air ionization, nucleation characteristics, 85Kr, SO2
PACS: 92.20.Bk, 92.60.Mt, 68.55.AA


85Kr BETA SPINDULIUOTĖS ĮTAKA AEROZOLIO DALELIŲ FORMAVIMUISI IR TRANSFORMACIJOMS
V. Ulevičiusa, D. Butkusb, K. Plauškaitėa, A. Girgždysb, S. Byčenkienėa, N. Špirkauskaitėa
aFizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Eksperimentinėje kameroje tirtas 85Kr beta spinduliuotės jonizacijos, sukeltos ore, poveikis aerozolio dalelių susidarymui ir jų dydžių spektrui. Aerozolio dalelių formavimuisi poveikį turėjo ir jonizacijos laipsnis, ir cheminės priemaišos (SO2) koncentracija. Įvedus į kamerą dideles SO2 ir 85Kr koncentracijas, per pirmąsias 20 min. aerozolio dalelių koncentracijos padidėjo net keliomis eilėmis. Ypač sparčiai aerozolio dalelių koncentracija padidėjo padidinus kameroje SO2 koncentraciją. Esant didesnei SO2 koncentracijai, greičiau formavosi ir aerozolio dalelės, o formavimosi greitis skyrėsi eile nuo stebimo gamtinėje aplinkoje (Preilos stotyje), atitinkamai 42,1–45,3 ir 1,2–9,9 nm/h. Aerozolio dalelių formavimosi greičiai eksperimento metu, esant padidintai jonizacijai ir SO2 koncentracijai (2–3 μμg/m3) kaip foninėje stotyje ore, buvo panašūs, atitinkamai 0,06 ir 0,14 cm–3s–1. Aerozolio dalelių koaguliacinis nuotėkis buvo didesnis eksperimente, kai SO2 koncentracija buvo lygi gamtinei. Kai buvo didelės SO2 ir 85Kr koncentracijos, aerozolio dalelių koaguliacinis nuotėkis buvo mažesnis, kas rodo, kad nanometrinių dydžių dalelės lėčiau pasišalino iš oro dėl koaguliacijos.


References / Nuorodos


[1] M. Kulmala , H. Vehkamaki, T. Petaja, M. Dal Maso, A. Lauri, V. Kerminen, W. Birmilli, and P. McMurry, Formation and growth rates of ultrafine atmospheric particles, A review of observations, J. Aerosol Sci. 35, 143–176 (2004).
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
[2] A. Lushnikov and M. Kulmala, Charging of aerosol particles in the near free-molecule regime, Europhys. J. D 29, 345–355 (2004),
http://dx.doi.org/10.1140/epjd/e2004-00047-9
[3] A. Kristensson, M. Dal Maso, E. Swietlicki, T. Hussein, J. Zhou, V.M. Kerminen, and M. Kulmala, Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history, Tellus B 60, 330–344 (2008),
http://dx.doi.org/10.3402/tellusb.v60i3.16927
[4] N.S. Holmes, A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications, Atmos. Environ. 41, 2183–2201 (2007),
http://dx.doi.org/10.1016/j.atmosenv.2006.10.058
[5] A. Hamed, J. Joutsensaari, S. Mikkonen, L. Sogacheva, M. Dal Maso, M. Kulmala, F. Cavalli, S. Fuzzi, M.C. Facchini, S. Decesari, M. Mircea, K.E.J. Lehtinen, and A. Laaksonen, Nucleation and growth of new particles in Po Valley, Italy, Atmos. Chem. Phys. 7, 355–376 (2007),
http://dx.doi.org/10.5194/acp-7-355-2007
[6] M. Dal Maso, L. Sogacheva, P.P. Aalto, I. Riipinen, M. Komppula, P. Tunved, L. Korhonen, V. Suur-Uski, A. Hirsikko, T. Kurtén, V.-M. Kerminen, H. Lihavainen, Y. Viisanen, H.-C. Hansson, and M. Kulmala, Aerosol size distribution measurements at four Nordic field stations: identification, analysis and trajectory analysis of new particle formation bursts, Tellus B 59, 350–361 (2007),
http://dx.doi.org/10.1111/j.1600-0889.2007.00267.x
[7] B. Bonn, M. Kulmala, I. Riipinen, S.L. Sihto, and T.M. Ruuskanen, How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation, J. Geophys. Res. 113, D11209 (2008),
http://dx.doi.org/10.1029/2007JD009078
[8] M. Dal Maso, M. Kulmala, I. Riipinen, R. Wagner, T. Hussein, P.P. Aalto, and K.E.J. Lehtinen, Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res. 10(5), 323–336 (2005),
http://www.borenv.net/BER/pdfs/ber10/ber10-323.pdf
[9] K. Plauškaitė, R. Kazlauskaitė, J. Andriejauskienė, and V. Ulevičius, Parameterization of new particle formation and growth at the Preila station, Lithuanian J. Phys. 45, 139–147 (2005),
http://dx.doi.org/10.3952/lithjphys.45210
[10] V. Ulevičius, G. Mordas, and K. Plauškaitė, Nucleation events at the Preila environmental research station, Environ. Chem. Phys. 24, 38–44 (2002)
[11] Ü. Kikas, A. Reinart, A. Pugatshova, E. Tamm, and V. Ulevičius, Microphysical, chemical and optical aerosol properties in the Baltic Sea region, Atmos. Res. 90, 211–222 (2008),
http://dx.doi.org/10.1016/j.atmosres.2008.02.009
[12] A.P. Hyvärinen, M. Komppula, C. Engler, N. Kivekäs, V.M. Kerminen, M. Dal Maso, Y. Viisanen, and H. Lihavainen, Atmospheric new particle formation at Utö, Baltic Sea 2003–2005, Tellus 60B, 345–352 (2008),
http://dx.doi.org/10.1111/j.1600-0889.2008.00343.x
[13] R. Jasiulionis, Ionizing radiation doses in the environment of the Ignalina NPP, Lithuanian J. Phys. 42, 61–64 (2002)
[14] V. Smirnov, Deformation of ionic, gaseous and aerosol compositions in the air by the radioactive matter pollution, Collections IEM 19(152), 45–60 (1992) [in Russian]
[15] B. Styro and D. Butkus, Geophysical Problems of Krypton–85 in the Atmosphere (Mokslas, Vilnius, Lithuania, 1988) [in Russian]
[16] R. Jasiulionis, R. Krenevičius, J.L. Morkeliūnas, and J. Jablonskas, Air ionization in the NPP jet, in: Annual Report 1992 (Institute of Physics, Vilnius, Lithuania, 1992) pp. 74–77
[17] V. Matuolis and P. Polukordas, An evaluation of the atmosphere ionization state on the territory of the Lithuanian SSR in May–June 1986, Atmos. Phys. 14, 28–37 (1989) [in Lithuanian]
[18] V. Smirnov, Electrical characteristics of the air in the zone of the Chernobyl NPP accident, Collections IEM 19(152), 111–122 (1992) [in Russian]
[19] V. Kornienko and V. Smirnov, Investigation of stimulated gas-particle conversion in the atmosphere, Collections IEM 51(142), 99–109 (1990) [in Russian]
[20] G.J. Madelaine, M.L. Perrin, and A. Renoux, Formation and evolution of ultrafine particles produced by radiolysis and photolysis, J. Geophys. Res. 85, 7471-–7474 (1980),
http://dx.doi.org/10.1029/JC085iC12p07471
[21] V. Winklymayr, M. Ramamurthi, R. Strydom, and P.K. Hopke, Size distribution measurements of ultrafine aerosols, dp > 1.8 nm, formed by radiolysis in a diameter measurement analyzer aerosol charger, Aerosol Sci. Technol. 13, 394–398 (1990),
http://dx.doi.org/10.1080/02786829008959454
[22] P.H. McMurry and J.C. Wilson, Growth laws for the formation of secondary ambient aerosols: Implications for chemical conversion mechanisms, Atmos. Environ. 16, 121–134 (1982),
http://dx.doi.org/10.1016/0004-6981(82)90319-5
[23] V. Ulevičius, S. Trakumas, and A. Girgždys, Aerosol size distribution transformation in fog, Atmos. Environ. 28, 795–800 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90238-0
[24] B. Verheggen and M. Mozurkewich, Determination of the nucleation rate from observation of a SO2 induced atmospheric nucleation event, J. Geophys. Res. 107, 4123 (2002),
http://dx.doi.org/10.1029/2001JD000683
[25] A. Juozaitis, S. Trakumas, R. Girgždienė, A. Girgždys, D. Šopauskienė, and V. Ulevičius, Investigations of gas-to-particle conversion in the atmosphere, Atmos. Res. 41, 183–201 (1996),
http://dx.doi.org/10.1016/0169-8095(96)00008-7
[26] A. Juozaitis, V. Ulevičius, A. Girgždys, and K. Willeke, Differentiation of hydrophobic from hydrophilic submicrometer aerosol particles, Aerosol Sci. Technol. 18, 202–212 (1993),
http://dx.doi.org/10.1080/02786829308959595
[27] K.T. Whitby, W.E. Clark, V.A. Marple, G.M. Sverdrup, G.J. Sem, K. Willeke, B.Y.H. Liu, and D.Y.H. Pui, Characterization of California aerosols - 1. Size distributions of freeway aerosol, Atmos. Environ. 9, 463–482 (1975),
http://dx.doi.org/10.1016/0004-6981(75)90107-9
[28] W.A. Hoppel, Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols, J. Aerosol Sci. 9, 41–54 (1978),
http://dx.doi.org/10.1016/0021-8502(78)90062-9
[29] B.T. Chen, H.C. Yeh, and Y.S. Cheng, Evaluation of an environmental reaction chamber, Aerosol Sci. Technol. 17, 9–24 (1992),
http://dx.doi.org/10.1080/02786829208959556
[30] M. Kulmala, A. Toivonen, J.M. Mäkelä, and A. Laaksonen, Analysis and growth of the nucleation mode particles observed in Boreal forest, Tellus 50B, 449–462 (1998),
http://dx.doi.org/10.1034/j.1600-0889.1998.t01-4-00004.x
[31] M. Kulmala, M. Dal Maso, J.M. Mäkelä, L. Pirjola, M. Väkevä, P.P. Aalto, P. Miikkulainen, K. Hämeri, and C. O'Dowd, On the formation, growth and composition of nucleation mode particles, Tellus 53B, 479–490 (2001),
http://dx.doi.org/10.1034/j.1600-0889.2001.d01-33.x
[32] M. Kulmala, Nucleation as an Aerosol Physical Problem, PhD thesis, University of Helsinki, Department of Physics (Helsinki, Finland, 1988)