[PDF]    http://dx.doi.org/10.3952/lithjphys.49413

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 383–388 (2009)


NECESSARY CONDITIONS FOR EQUIVALENCE WITH THE SPECIAL THEORY OF RELATIVITY
A. Sfarti
University of California, Berkeley (Soda Hall), Berkeley, California, USA
E-mail: egas@pacbell.net

Received 4 August 2009; revised 18 December 2009; accepted 18 December 2009

The Mansouri–Sexl theory is a well known test theory of relativity. Tangherlini [1] produced a theory that is a limit case for the Mansouri–Sexl theory. We will show that Tangherlin's theory disagrees with the waveguide theory, predicting a different result than special relativity (SR), so, the Tangherlini theory is not equivalent with SR. We will also show that for a theory to be equivalent to the special relativity, contrary to Robertson [2] it is not sufcient to predict the same results for the Michelson–Morley, Kennedy–Thorndike, and Ives–Stilwell experiments, it must also predict the same results for a waveguide-based experiment described in Section 4 of our paper.
Keywords: Mansouri–Sexl test theory, SME, Tangherlini theory, Ives–Stilwell experiment, transverse Doppler effect, waveguide theory
PACS: 03.30.+p


BŪTINOS EKVIVALENTUMO SPECIALIAJAI RELIATYVUMO TEORIJAI SĄLYGOS
A. Sfarti
Kalifornijos universitetas Berklyje, JAV

Mansouri–Sexl teorija gerai žinoma kaip testinė reliatyvumo teorija. Tangherlini [1] pasiūlė teoriją, kuri yra ribinis Mansouri–Sexl teorijos atvejis. Parodyta, kad Tangherlini teorija nesutampa su bangolaidžio teorija, numatydama kitokį rezultatą, nei specialioji reliatyvumo teorija. Taigi, Tangherlini teorija nėra ekvivalenti specialiajai reliatyvumo teorijai. Taip pat parodoma, kad, priešingai nei teigia Robertson [28], būtinos tam tikros teorijos ekvivalentumo specialiajai reliatyvumo teorijai sąlygos nėra tik tų pačių rezultatų numatymas Michelson–Morley, Kennedy–Thorndike ir Ives–Stilwell eksperimentuose, bet ir vienodo rezultato prognozė bangolaidžio eksperimente, aprašytame šio straipsnio 4 skyriuje.


References / Nuorodos


[1] F.R. Tangherlini, An introduction to the general theory of relativity, Nuovo Cimento Supp. 20, 1 (1961),
http://dx.doi.org/10.1007/bf02746778
[2] H.P. Robertson, Postulate versus observation in the special theory of relativity, Rev. Mod. Phys. 21, 378 (1949),
http://dx.doi.org/10.1103/RevModPhys.21.378
[3] R. Mansouri and S.U. Sexl, A test of special relativity, Gen. Rel. Grav. 8, 497 (1977),
http://dx.doi.org/10.1007/BF00762634
[4] R. Mansouri and S.U. Sexl, A test of special relativity, Gen. Rel. Grav. 8, 515 (1977),
http://dx.doi.org/10.1007/BF00762635
[5] R. Mansouri and S.U. Sexl, A test of special relativity, Gen. Rel. Grav. 8, 809 (1977),
http://dx.doi.org/10.1007/BF00759585
[6] A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. Phys. 322(10), 891 (1905),
http://dx.doi.org/10.1002/andp.19053221004
[7] G.B. Malykin, Para-Lorentz transformations, Phys. Usp. 53, 263 (2009),
http://dx.doi.org/10.3367/UFNe.0179.200903e.0285
[8] A. Eagle, A criticism of special relativity, Philos. Mag. Ser. 26, 410 (1938),
http://dx.doi.org/10.1080/14786443808562137
[9] A. Eagle, Note on synchronizing "clocks" in moving systems by a connecting spindle, Philos. Mag. Ser. 28, 592 (1939),
http://dx.doi.org/10.1080/14786443908521247
[10] A. Sfarti, One way light speed measurement – experimental proof of light speed isotropy, in: Proceedings of the XI Marcel Grossman Conference, Berlin (2006),
http://dx.doi.org/10.1142/6997
[11] A. Sfarti, Detection of light speed anisotropy via a high-speed Ives–Stillwell experiment, Can. J. Phys. 86, 5, 747 (2008),
http://dx.doi.org/10.1139/P07-120
[12] D.R. Gagnon, D.G. Torr, P.T. Kolen, and T. Chang, Guided-wave measurement of the one-way speed of light, Phys. Rev. A 38, 4 (1988),
http://dx.doi.org/10.1103/PhysRevA.38.1767
[13] T. Chang, Maxwell's equations in anisotropic space, Phys. Lett. 70A, 1 (1979),
http://dx.doi.org/10.1016/0375-9601(79)90309-8
[14] S. Wentworth, Fundamentals of Electromagnetics with Engineering Applications (Wiley, 2006) p. 338–355,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470105755.html
[15] T. Chang and D. Torr, Dual properties of spacetime under an alternative Lorentz transformation, Found. Phys. Lett. 1, 4 (1988),
http://dx.doi.org/10.1007/BF00696360
[16] T. Chang, D. Torr, and D. Gagnon, A modified Lorentz theory as a test theory of special relativity, Found. Phys. Lett. 1, 4 (1988),
http://dx.doi.org/10.1007/BF00696361