[PDF]
http://dx.doi.org/10.3952/lithjphys.49413
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 383–388 (2009)
NECESSARY CONDITIONS FOR
EQUIVALENCE WITH THE SPECIAL THEORY OF RELATIVITY
A. Sfarti
University of California, Berkeley (Soda Hall), Berkeley,
California, USA
E-mail: egas@pacbell.net
Received 4 August 2009; revised 18
December 2009; accepted 18 December 2009
The Mansouri–Sexl theory is a well
known test theory of relativity. Tangherlini [1] produced a theory
that is a limit case for the Mansouri–Sexl theory. We will show
that Tangherlin's theory disagrees with the waveguide theory,
predicting a different result than special relativity (SR), so,
the Tangherlini theory is not equivalent with SR. We will also
show that for a theory to be equivalent to the special relativity,
contrary to Robertson [2] it is not sufcient to predict the same
results for the Michelson–Morley, Kennedy–Thorndike, and
Ives–Stilwell experiments, it must also predict the same results
for a waveguide-based experiment described in Section 4 of our
paper.
Keywords: Mansouri–Sexl test theory,
SME, Tangherlini theory, Ives–Stilwell experiment, transverse
Doppler effect, waveguide theory
PACS: 03.30.+p
BŪTINOS EKVIVALENTUMO
SPECIALIAJAI RELIATYVUMO TEORIJAI SĄLYGOS
A. Sfarti
Kalifornijos universitetas Berklyje, JAV
Mansouri–Sexl teorija gerai žinoma kaip testinė
reliatyvumo teorija. Tangherlini [1] pasiūlė teoriją, kuri yra
ribinis Mansouri–Sexl teorijos atvejis. Parodyta, kad Tangherlini
teorija nesutampa su bangolaidžio teorija, numatydama kitokį
rezultatą, nei specialioji reliatyvumo teorija. Taigi, Tangherlini
teorija nėra ekvivalenti specialiajai reliatyvumo teorijai. Taip
pat parodoma, kad, priešingai nei teigia Robertson [28], būtinos
tam tikros teorijos ekvivalentumo specialiajai reliatyvumo
teorijai sąlygos nėra tik tų pačių rezultatų numatymas
Michelson–Morley, Kennedy–Thorndike ir Ives–Stilwell
eksperimentuose, bet ir vienodo rezultato prognozė bangolaidžio
eksperimente, aprašytame šio straipsnio 4 skyriuje.
References / Nuorodos
[1] F.R. Tangherlini, An introduction to the general theory of
relativity, Nuovo Cimento Supp. 20, 1 (1961),
http://dx.doi.org/10.1007/bf02746778
[2] H.P. Robertson, Postulate versus observation in the
special theory of relativity, Rev. Mod. Phys. 21, 378
(1949),
http://dx.doi.org/10.1103/RevModPhys.21.378
[3] R. Mansouri and S.U. Sexl, A test of special relativity, Gen.
Rel. Grav. 8, 497 (1977),
http://dx.doi.org/10.1007/BF00762634
[4] R. Mansouri and S.U. Sexl, A test of special relativity, Gen.
Rel. Grav. 8, 515 (1977),
http://dx.doi.org/10.1007/BF00762635
[5] R. Mansouri and S.U. Sexl, A test of special relativity, Gen.
Rel. Grav. 8, 809 (1977),
http://dx.doi.org/10.1007/BF00759585
[6] A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. Phys. 322(10),
891 (1905),
http://dx.doi.org/10.1002/andp.19053221004
[7] G.B. Malykin, Para-Lorentz transformations, Phys. Usp. 53,
263 (2009),
http://dx.doi.org/10.3367/UFNe.0179.200903e.0285
[8] A. Eagle, A criticism of special relativity, Philos. Mag. Ser. 26,
410 (1938),
http://dx.doi.org/10.1080/14786443808562137
[9] A. Eagle, Note on synchronizing "clocks" in moving systems by a
connecting spindle, Philos. Mag. Ser. 28, 592 (1939),
http://dx.doi.org/10.1080/14786443908521247
[10] A. Sfarti, One way light speed measurement – experimental proof
of light speed isotropy, in: Proceedings of the XI Marcel
Grossman Conference, Berlin (2006),
http://dx.doi.org/10.1142/6997
[11] A. Sfarti, Detection of light speed anisotropy via a high-speed
Ives–Stillwell experiment, Can. J. Phys. 86, 5, 747 (2008),
http://dx.doi.org/10.1139/P07-120
[12] D.R. Gagnon, D.G. Torr, P.T. Kolen, and T. Chang, Guided-wave
measurement of the one-way speed of light, Phys. Rev. A 38,
4 (1988),
http://dx.doi.org/10.1103/PhysRevA.38.1767
[13] T. Chang, Maxwell's equations in anisotropic space, Phys. Lett.
70A, 1 (1979),
http://dx.doi.org/10.1016/0375-9601(79)90309-8
[14] S. Wentworth, Fundamentals of Electromagnetics with
Engineering Applications (Wiley, 2006) p. 338–355,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470105755.html
[15] T. Chang and D. Torr, Dual properties of spacetime under an
alternative Lorentz transformation, Found. Phys. Lett. 1, 4
(1988),
http://dx.doi.org/10.1007/BF00696360
[16] T. Chang, D. Torr, and D. Gagnon, A modified Lorentz theory as
a test theory of special relativity, Found. Phys. Lett. 1, 4
(1988),
http://dx.doi.org/10.1007/BF00696361