[PDF]    http://dx.doi.org/10.3952/lithjphys.49414

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 433–438 (2009)


THERMAL LENS COMPENSATION IN HIGH AVERAGE POWER DIODE PUMPED Nd:YVO4 LASER USING ASPHERIC MIRROR
D. Stučinskasa, A. Varanavičiusa, R. Antipenkova, M. Grishinb,c, J. Kodzb, A. Melninkaitisa, and A. Vanagasa
aDepartment of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: darius.stucinskas@ff.vu.lt
bEKSPLA Ltd, Savanorių 231, LT-02300 Vilnius, Lithuania
cInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania

Received 18 July 2009; revised 18 December 2009; accepted 18 December 2009

We demonstrate a high-power, diode-pumped, pulsed Nd:YVO4 laser with a 1.2 diffraction-limited output of 9.5 W using a thin film deposition technology made aspheric mirror to correct the thermally induced phase distortion of the lasing medium.
Keywords: Nd:YVO4, thermal lens compensation, diode-pumped, aspheric optics
PACS: 42.55.Xi, 42.60.By


ŠILUMINIO LĘŠIO KOMPENSAVIMAS ASFERINIU VEIDRODŽIU DIODINIO KAUPINIMO DIDELĖS VIDUTINĖS GALIOS Nd:YVO4 LAZERYJE

D. Stučinskasa, A. Varanavičiusa, R. Antipenkova, M. Grishinb,c, J. Kodzb, A. Melninkaitisa, A. Vanagasa
aVilniaus universitetas, Vilnius, Lietuva
bUAB EKSPLA, Vilnius, Lietuva
cFizikos institutas, Vilnius, Lietuva

Pateikiami šiluminio lęšio sferinės aberacijos kompensavimo panaudojant asferinius rezonatoriaus elementus išilginio diodinio kaupinimo Nd:YVO4 regeneratyviniame stiprintuve tyrimo rezultatai. Asferiniai optiniai elementai buvo pagaminti naudojant plonasluoksnių dangų garinimo technologiją. Šiluminio lęšio aberacijos buvo išmatuotos Shack'o ir Hartmann'o bangos fronto matuokliu. Remiantis matavimų rezultatais, pagaminta 10 kompensatorių, skirtų sferinės aberacijos korekcijai: ant sferinio BK7 pagrindėlio buvo užgarinti Gauso formos iškilumai. Vienas nuo kito kompensatoriai skyrėsi skirtingu užgarinto iškilumo aukščiu bei pločiu. Optimali kompensatoriaus padėtis rezonatoriuje buvo nustatoma atsižvelgiant į lazerio išvadinę galią bei lazerio išvadinio pluošto kokybės parametrą M2. Naudojant asferinį kompensatorių, generavimo slenkstis sumažėjo daugiau kaip 3 kartus, taip pat žymiai pagerėjo lazerio pluošto intensyvumo skirstinys. Matuojant pluošto kokybės parametrus nustatyta, kad naudojant kompensatorius M2 yra mažesnis nei 1,2 visame lazerio veikimo diapazone, tuo tarpu be kompensatoriaus M2 būna nuo 1,2 iki 1,4.


References / Nuorodos


[1] D.M. Karnakis, M.R.H. Knowles, P.V. Petkov, T. Dobrev, and S.S. Dimov, Surface integrity optimisation in ps-laser milling of advanced engineering materials, in: Proceedings of the 4th International WLT Conference on Lasers in Manufacturing, Munich, Germany (2007),
http://www.researchgate.net/publication/268250477_Surface_integrity_optimisation_in_ps-laser_milling_of_advanced_engineering_materials
[2] C. Moorhouse, Industrial applications of a fiber-based high-average-power picosecond laser, Proc. SPIE 7201, 72010F (Feb. 24, 2009),
http://dx.doi.org/10.1117/12.805506
[3] http://www.ekspla.com/repository/catalogue/infofiles/IL/application_notes/M1104_short_pulse_lasers_for_microfabrication.pdf
[4] M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation, in: Proceedings of the 8th International Symposium on Laser Precision Microfabrication, Vienna, Austria (2007),
http://dx.doi.org/10.2961/jlmn.2008.03.0001
[5] S. Haas, A. Gordijn, and H. Stiebig, High speed laser processing for monolithical series connection of silicon thin-film modules, Prog. Photovolt. Res. Appl. 16, 195–203 (2008),
http://dx.doi.org/10.1002/pip.792
[6] A.W. Tucker, M. Birnbaum, C L. Fincher, and J.W. Erler, Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4, J. Appl. Phys. 48, 4907–4911 (1977),
http://dx.doi.org/10.1063/1.323618
[7] D. Shen, A. Liu, J. Song, and K. Ueda, Efficient operation of an intracavity-doubled Nd:YVO4 KTP laser end pumped by a high-brightness laser diode, Appl. Opt. 37, 7785–7788 (1998),
http://dx.doi.org/10.1364/AO.37.007785
[8] C. Liu, T. Riesbeck, X.Wang, J. Ge, Z. Xiang, J. Chen, and H.J. Eichler, Influence of spherical aberrations on the performance of dynamically stable resonators, Opt. Commun. 281, 5222–5228 (2008).
http://dx.doi.org/10.1016/j.optcom.2008.07.010
[9] Y. Jeong, J. Nilsson, J.K. Sahu, D.N. Payne, R. Horley, L.M.B. Hickey, and P.W. Turner, Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W, IEEE J. Sel. Topics Quantum Electron. 13, 546–551 (2007),
http://dx.doi.org/10.1109/JSTQE.2007.896639
[10] D.A. Rockwell, A review of phase-conjugate solid-state lasers, IEEE J. Quantum Electron. 24, 1124–1140 (1988),
http://dx.doi.org/10.1109/3.236
[11] Y. Ojima, K. Nawata, and T. Omatsu, Over 10-watt pico-second diffraction-limited output from a Nd:YVO4 slab amplifier with a phase conjugate mirror, Opt. Express 13, 8993–8998 (2005),
http://dx.doi.org/10.1364/OPEX.13.008993
[12] J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, Thermal lens compensation by convex deformation of a flat mirror with variable annular force, Appl. Phys. B 82, 275–281 (2006),
http://dx.doi.org/10.1007/s00340-005-2033-9
[13] W. Lubeigt, G. Valentine, and D. Burns, Enhancement of laser performance using an intracavity deformable membrane mirror, Opt. Express 16, 10943–10955 (2008),
http://dx.doi.org/10.1364/OE.16.010943
[14] F. Reinert and W. Lüthy, Thermo-optically driven adaptive mirror based on thermal expansion: preparation and resolution, Opt. Express 13, 10749–10753 (2005),
http://dx.doi.org/10.1364/OPEX.13.010749
[15] F. Reinert, M. Gerber, W. Lüthy, and T. Graf, Laser resonator with a thermo-optically driven adaptive mirror, in: Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), WB27,
http://dx.doi.org/10.1364/ASSP.2005.WB27
[16] S.C. Tidwell, J.F. Seamans, and M.S. Bowers, Highly efficient 60-W TEM00 cw diode-end-pumped Nd:YAG laser, Opt. Lett. 18, 116–118 (1993),
http://dx.doi.org/10.1364/OL.18.000116
[17] J.J. Kasinski and R.L. Burnham, Near-diffraction-limited, high-energy, high-power, diode-pumped laser using thermal aberration correction with aspheric diamond-turned optics, Appl. Opt. 35, 5949–5954 (1996),
http://dx.doi.org/10.1364/AO.35.005949
[18] EKSPLA, www.ekspla.com
[19] E. Cuche, P. Marquet, and C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms, Appl. Opt. 38, 6994–7001 (1999),
http://dx.doi.org/10.1364/AO.38.006994
[20] E. Cuche, P. Marquet, and C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography, Appl. Opt. 39, 4070–4075 (2000),
http://dx.doi.org/10.1364/AO.39.004070
[21] E. Cuche, F. Bevilacqua, and Ch. Depeursinge, Digital holography for quantitative phase-contrast imaging, Opt. Lett. 24, 291–293 (1999),
http://dx.doi.org/10.1364/OL.24.000291