[PDF]
http://dx.doi.org/10.3952/lithjphys.49414
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 49, 433–438 (2009)
THERMAL LENS COMPENSATION IN
HIGH AVERAGE POWER DIODE PUMPED Nd:YVO4 LASER USING
ASPHERIC MIRROR
D. Stučinskasa, A. Varanavičiusa, R.
Antipenkova, M. Grishinb,c, J. Kodzb,
A. Melninkaitisa, and A. Vanagasa
aDepartment of Quantum Electronics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: darius.stucinskas@ff.vu.lt
bEKSPLA Ltd, Savanorių 231, LT-02300 Vilnius,
Lithuania
cInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
Received 18 July 2009; revised 18
December 2009; accepted 18 December 2009
We demonstrate a high-power,
diode-pumped, pulsed Nd:YVO4 laser with a 1.2
diffraction-limited output of 9.5 W using a thin film deposition
technology made aspheric mirror to correct the thermally induced
phase distortion of the lasing medium.
Keywords: Nd:YVO4, thermal
lens compensation, diode-pumped, aspheric optics
PACS: 42.55.Xi, 42.60.By
ŠILUMINIO LĘŠIO KOMPENSAVIMAS
ASFERINIU VEIDRODŽIU DIODINIO KAUPINIMO DIDELĖS VIDUTINĖS GALIOS
Nd:YVO4 LAZERYJE
D. Stučinskasa, A. Varanavičiusa, R.
Antipenkova, M. Grishinb,c, J. Kodzb,
A. Melninkaitisa, A. Vanagasa
aVilniaus universitetas, Vilnius, Lietuva
bUAB EKSPLA, Vilnius, Lietuva
cFizikos institutas, Vilnius, Lietuva
Pateikiami šiluminio lęšio sferinės aberacijos
kompensavimo panaudojant asferinius rezonatoriaus elementus
išilginio diodinio kaupinimo Nd:YVO4 regeneratyviniame
stiprintuve tyrimo rezultatai. Asferiniai optiniai elementai buvo
pagaminti naudojant plonasluoksnių dangų garinimo technologiją.
Šiluminio lęšio aberacijos buvo išmatuotos Shack'o ir Hartmann'o
bangos fronto matuokliu. Remiantis matavimų rezultatais, pagaminta
10 kompensatorių, skirtų sferinės aberacijos korekcijai: ant
sferinio BK7 pagrindėlio buvo užgarinti Gauso formos iškilumai.
Vienas nuo kito kompensatoriai skyrėsi skirtingu užgarinto
iškilumo aukščiu bei pločiu. Optimali kompensatoriaus padėtis
rezonatoriuje buvo nustatoma atsižvelgiant į lazerio išvadinę
galią bei lazerio išvadinio pluošto kokybės parametrą M2.
Naudojant asferinį kompensatorių, generavimo slenkstis sumažėjo
daugiau kaip 3 kartus, taip pat žymiai pagerėjo lazerio pluošto
intensyvumo skirstinys. Matuojant pluošto kokybės parametrus
nustatyta, kad naudojant kompensatorius M2 yra
mažesnis nei 1,2 visame lazerio veikimo diapazone, tuo tarpu be
kompensatoriaus M2 būna nuo 1,2 iki 1,4.
References / Nuorodos
[1] D.M. Karnakis, M.R.H. Knowles, P.V. Petkov, T. Dobrev, and S.S.
Dimov, Surface integrity optimisation in ps-laser milling of
advanced engineering materials, in: Proceedings of the 4th International
WLT Conference on Lasers in Manufacturing, Munich, Germany
(2007),
http://www.researchgate.net/publication/268250477_Surface_integrity_optimisation_in_ps-laser_milling_of_advanced_engineering_materials
[2] C. Moorhouse, Industrial applications of a fiber-based
high-average-power picosecond laser, Proc. SPIE 7201, 72010F (Feb.
24, 2009),
http://dx.doi.org/10.1117/12.805506
[3] http://www.ekspla.com/repository/catalogue/infofiles/IL/application_notes/M1104_short_pulse_lasers_for_microfabrication.pdf
[4] M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, Microdrilling
in steel with frequency-doubled ultrashort pulsed laser radiation,
in: Proceedings of the 8th International Symposium on Laser
Precision Microfabrication, Vienna, Austria (2007),
http://dx.doi.org/10.2961/jlmn.2008.03.0001
[5] S. Haas, A. Gordijn, and H. Stiebig, High speed laser processing
for monolithical series connection of silicon thin-film modules,
Prog. Photovolt. Res. Appl. 16, 195–203 (2008),
http://dx.doi.org/10.1002/pip.792
[6] A.W. Tucker, M. Birnbaum, C L. Fincher, and J.W. Erler,
Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,
J. Appl. Phys. 48, 4907–4911 (1977),
http://dx.doi.org/10.1063/1.323618
[7] D. Shen, A. Liu, J. Song, and K. Ueda, Efficient operation of an
intracavity-doubled Nd:YVO4 KTP laser end pumped by a
high-brightness laser diode, Appl. Opt. 37, 7785–7788
(1998),
http://dx.doi.org/10.1364/AO.37.007785
[8] C. Liu, T. Riesbeck, X.Wang, J. Ge, Z. Xiang, J. Chen, and H.J.
Eichler, Influence of spherical aberrations on the performance of
dynamically stable resonators, Opt. Commun. 281, 5222–5228
(2008).
http://dx.doi.org/10.1016/j.optcom.2008.07.010
[9] Y. Jeong, J. Nilsson, J.K. Sahu, D.N. Payne, R. Horley, L.M.B.
Hickey, and P.W. Turner, Power scaling of single-frequency
ytterbium-doped fiber master oscillator power amplifier sources up
to 500 W, IEEE J. Sel. Topics Quantum Electron. 13, 546–551
(2007),
http://dx.doi.org/10.1109/JSTQE.2007.896639
[10] D.A. Rockwell, A review of phase-conjugate solid-state lasers,
IEEE J. Quantum Electron. 24, 1124–1140 (1988),
http://dx.doi.org/10.1109/3.236
[11] Y. Ojima, K. Nawata, and T. Omatsu, Over 10-watt pico-second
diffraction-limited output from a Nd:YVO4 slab amplifier
with a phase conjugate mirror, Opt. Express 13, 8993–8998
(2005),
http://dx.doi.org/10.1364/OPEX.13.008993
[12] J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J.
Porter, Thermal lens compensation by convex deformation of a flat
mirror with variable annular force, Appl. Phys. B 82,
275–281 (2006),
http://dx.doi.org/10.1007/s00340-005-2033-9
[13] W. Lubeigt, G. Valentine, and D. Burns, Enhancement of laser
performance using an intracavity deformable membrane mirror, Opt.
Express 16, 10943–10955 (2008),
http://dx.doi.org/10.1364/OE.16.010943
[14] F. Reinert and W. Lüthy, Thermo-optically driven adaptive
mirror based on thermal expansion: preparation and resolution, Opt.
Express 13, 10749–10753 (2005),
http://dx.doi.org/10.1364/OPEX.13.010749
[15] F. Reinert, M. Gerber, W. Lüthy, and T. Graf, Laser resonator
with a thermo-optically driven adaptive mirror, in: Advanced
Solid-State Photonics, Technical Digest (Optical Society of
America, 2005), WB27,
http://dx.doi.org/10.1364/ASSP.2005.WB27
[16] S.C. Tidwell, J.F. Seamans, and M.S. Bowers, Highly efficient
60-W TEM00 cw diode-end-pumped Nd:YAG laser, Opt. Lett. 18,
116–118 (1993),
http://dx.doi.org/10.1364/OL.18.000116
[17] J.J. Kasinski and R.L. Burnham, Near-diffraction-limited,
high-energy, high-power, diode-pumped laser using thermal aberration
correction with aspheric diamond-turned optics, Appl. Opt. 35,
5949–5954 (1996),
http://dx.doi.org/10.1364/AO.35.005949
[18] EKSPLA, www.ekspla.com
[19] E. Cuche, P. Marquet, and C. Depeursinge, Simultaneous
amplitude-contrast and quantitative phase-contrast microscopy by
numerical reconstruction of Fresnel off-axis holograms, Appl. Opt. 38,
6994–7001 (1999),
http://dx.doi.org/10.1364/AO.38.006994
[20] E. Cuche, P. Marquet, and C. Depeursinge, Spatial filtering for
zero-order and twin-image elimination in digital off-axis
holography, Appl. Opt. 39, 4070–4075 (2000),
http://dx.doi.org/10.1364/AO.39.004070
[21] E. Cuche, F. Bevilacqua, and Ch. Depeursinge, Digital
holography for quantitative phase-contrast imaging, Opt. Lett. 24,
291–293 (1999),
http://dx.doi.org/10.1364/OL.24.000291